How much work does a pulling force of $40\, N$ do on the $20\, kg$ box in pulling it $8\, m$ across the smooth floor at a constant speed. The pulling force is directed at $60^o$ above the horizontal .............. $\mathrm{J}$
$160$
$277$
$784$
None of the above
When the momentum of a body increases by $100\%$, its $KE$ increases by .............. $\%$
A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $u$. The force on the body is $mv^2/r$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle?
Four particles $A, B, C$ and $D$ of equal mass are placed at four corners of a square. They move with equal uniform speed $v$ towards the intersection of the diagonals. After collision, $A$ comes to rest, $B$ traces its path back with same speed and $C$ and $D$ move with equal speeds. What is the velocity of $C$ after collision
A disc of mass $M$ and radius $R$ rolls on a horizontal surface and then rolls up an inclined plane as shown in the figure. If the velocity of the disc is $v$, the height to which the disc will rise will be
System shown in figure is released from rest. Pulley and spring are massless and the friction is absent everywhere. The speed of $5\, kg$ block, when $2\, kg$ block leaves the contact with ground is : (take force constant of the spring $K = 40\, N/m$ and $g = 10\, m/s^2$)