એક કણ એક વર્તુળાકાર પથ પર $10 \,ms^{-1}$ જેટલી અચળ ઝડપથી ગતિ કરે છે. જ્યારે તે વર્તુળનાં કેન્દ્રને ફરતે $60^o$ ના કોણે ભ્રમણ કરે ત્યારે તેના વેગના ફેરફારનું મૂલ્ય ........ $m/s$ થશે.
$10\sqrt 3$
$0$
$10\sqrt 2 $
$10$
બે સદીશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ ને સમાન મૂલ્ય છે. જો $\overrightarrow{ A }+\overrightarrow{ B }$ નું મૂલ્ય (માનાંક) $\overrightarrow{ A }-\overrightarrow{ B }$ ના મૂલ્ય કરતાં બમણું હોય, તો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ વચ્ચેનો કોણ ...................... થશે.
$\vec A $ અને $\vec B $ પરિણામી સદિશ $\vec A $ ને લંબ છે .$\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો કેટલો હશે ?
એક વ્યક્તિ વર્તુળાકાર માર્ગ ઉપર આકૃતિમાં દર્શાવ્યા અનુસાર $ A$ થી $B$ પર જાય છે. જો તે $60\,m$ જેટલું અંતર કાપતો હોય, તો તેના સ્થાનાંતરનું મૂલ્ય (માનાંક) લગભગ $.......m$ થશે.
$\left(\cos 135^{\circ}=-0.7\right.$ આપેલ છે.)
$ \vec A,\,\vec B $ અને $ \vec C $ ના મૂલ્યો અનુક્રમે $3, 4$ અને $5$ છે. જો $ \vec A + \vec B = \vec C $ હોય, તો $ \vec A $ અને $ \vec B $ વચ્ચે કેટલો ખૂણો થશે?
નીચેનામાંથી કઈ રાશિ/ રાશિઓ યામોક્ષોનાં અભિગમની પસંદગી પર આધાર રાખે છે?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$