2.Motion in Straight Line
hard

A particle is projected with velocity $v_{0}$ along $x-$ axis. A damping force is acting on the particle which is proportional to the square of the distance from the origin i.e., $ma =-\alpha x ^{2}.$ The distance at which the particle stops:

A

$\left(\frac{3 v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{2}}$

B

$\left(\frac{2 v_{0}}{3 \alpha}\right)^{\frac{1}{3}}$

C

$\left(\frac{2 v_{0}^{2}}{3 \alpha}\right)^{\frac{1}{2}}$

D

$\left(\frac{3 v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{3}}$

(JEE MAIN-2021)

Solution

$F=-\alpha x^{2}$

$m a=-\alpha x^{2}$

$a=\frac{-\alpha x^{2}}{m}$

$\frac{v d v}{d x}=-\frac{\alpha}{m} x^{2}$

$\int_{v_{0}}^{0} v d v=\int_{0}^{x}-\frac{\alpha}{m} x^{2} d x$

$\left(\frac{v^{2}}{2}\right)^{0}=-\frac{\alpha}{m}\left(\frac{x^{3}}{3}\right)_{0}^{x}$

$\frac{-v_{0}^{2}}{2}=-\frac{\alpha}{m} \frac{x^{3}}{3}$

$x=\left(\frac{3 m v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{3}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.