- Home
- Standard 11
- Physics
2.Motion in Straight Line
medium
A particle moves along a straight line such that its displacement at any time $t$ is given by $s = (t^3 -6t^2 + 3t + 4)\, m$. ...... $m/s$ is the velocity of the particle when its acceleration is zero ................. $\mathrm{m/s}$
A$-3$
B$-9$
C$-6$
D$-12$
Solution
$s=t^{3}-6 t^{2}+3 t+4$
$\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=3 \mathrm{t}^{2}-12 \mathrm{t}+3$
$a=\frac{d v}{d t}=6 t-12$
$a=0$
$t=2 \sec$
Velocity at $t=2 \mathrm{sec}$
$\mathrm{v}=-9 \mathrm{m} / \mathrm{s}$
$\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=3 \mathrm{t}^{2}-12 \mathrm{t}+3$
$a=\frac{d v}{d t}=6 t-12$
$a=0$
$t=2 \sec$
Velocity at $t=2 \mathrm{sec}$
$\mathrm{v}=-9 \mathrm{m} / \mathrm{s}$
Standard 11
Physics