1. Electric Charges and Fields
hard

A particle of charge $-q$ and mass $m$ moves in a circle of radius $r$ around an infinitely long line charge of linear density $+\lambda$. Then time period will be given as

(Consider $k$ as Coulomb's constant)

A

$\mathrm{T}^2=\frac{4 \pi^2 \mathrm{~m}}{2 \mathrm{k} \lambda \mathrm{q}} \mathrm{r}^3$

B

$T=2 \pi r \sqrt{\frac{m}{2 k \lambda q}}$

C

$\mathrm{T}=\frac{1}{2 \pi \mathrm{r}} \sqrt{\frac{\mathrm{m}}{2 \mathrm{k} \lambda \mathrm{q}}}$

D

$\mathrm{T}=\frac{1}{2 \pi} \sqrt{\frac{2 \mathrm{k} \lambda \mathrm{q}}{\mathrm{m}}}$

(JEE MAIN-2024)

Solution

$\frac{2 \mathrm{k} \lambda \mathrm{q}}{\mathrm{r}}=\mathrm{m} \omega^2 \mathrm{r}$

$\omega^2=\frac{2 \mathrm{k} \lambda \mathrm{q}}{\mathrm{mr}^2}$

$\left(\frac{2 \pi}{\mathrm{T}}\right)^2=\frac{2 \mathrm{k} \lambda \mathrm{q}}{\mathrm{mr}^2}$

$\mathrm{~T}=2 \pi \mathrm{r} \sqrt{\frac{\mathrm{m}}{2 \mathrm{k} \lambda \mathrm{q}}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.