A particle of mass $2\, kg$ is on a smooth horizontal table and moves in a circular path of radius $0.6\, m$. The height of the table from the ground is $0.8\, m$. If the angular speed of the particle is $12\, rad\, s^{-1}$, the magnitude of its angular momentum about a point on the ground right under the centre of the circle is ........ $kg\, m^2\,s^{-1}$
$14.4$
$8.64$
$20.16$
$11.52$
$A$ hollow sphere of radius $R$ and mass $m$ is fully filled with water of mass $m$. It is rolled down a horizontal plane such that its centre of mass moves with a velocity $v$. If it purely rolls
The direction of the angular velocity vector along
A particle is moving along a straight line parallel to $x$-axis with constant velocity. Find angular momentum about the origin in vector form
Obtain $\tau = I\alpha $ from angular momentum of rigid body.
A body of mass ' $m$ ' is projected with a speed ' $u$ ' making an angle of $45^{\circ}$ with the ground. The angular momentum of the body about the point of projection, at the highest point is expressed as $\frac{\sqrt{2} \mathrm{mu}^3}{\mathrm{Xg}}$. The value of ' $\mathrm{X}$ ' is