A particle of mass $2\, kg$ is on a smooth horizontal table and moves in a circular path of radius $0.6\, m$. The height of the table from the ground is $0.8\, m$. If the angular speed of the particle is $12\, rad\, s^{-1}$, the magnitude of its angular momentum about a point on the ground right under the centre of the circle is ........ $kg\, m^2\,s^{-1}$
$14.4$
$8.64$
$20.16$
$11.52$
A particle of mass $m = 5$ is moving with a uniform speed $v = 3\sqrt 2$ in the $XOY$ plane along the line $Y = X + 4$ . The magnitude of the angular momentum of the particle about the origin is .......
The potential energy of a particle of mass $m$ at a distance $r$ from a fixed point $O$ is given by $\mathrm{V}(\mathrm{r})=\mathrm{kr}^2 / 2$, where $\mathrm{k}$ is a positive constant of appropriate dimensions. This particle is moving in a circular orbit of radius $\mathrm{R}$ about the point $\mathrm{O}$. If $\mathrm{v}$ is the speed of the particle and $\mathrm{L}$ is the magnitude of its angular momentum about $\mathrm{O}$, which of the following statements is (are) true?
$(A)$ $v=\sqrt{\frac{k}{2 m}} R$
$(B)$ $v=\sqrt{\frac{k}{m}} R$
$(C)$ $\mathrm{L}=\sqrt{\mathrm{mk}} \mathrm{R}^2$
$(D)$ $\mathrm{L}=\sqrt{\frac{\mathrm{mk}}{2}} \mathrm{R}^2$
A solid sphere of mass $500\,g$ and radius $5\,cm$ is rotated about one of its diameter with angular speed of $10\,rad \, s ^{-1}$. If the moment of inertia of the sphere about its tangent is $x \times 10^{-2}$ times its angular momentum about the diameter. Then the value of $x$ will be ..............
A particle of mass $m$ is moving with constant velocity $v$ parallel to the $x$-axis as shown in the figure. Its angular momentum about origin $O$ is ..........
A particle of mass $'{m}'$ is moving in time $'t'$ on a trajectory given by
$\overrightarrow{{r}}=10 \alpha {t}^{2}\, \hat{{i}}+5 \beta({t}-5)\, \hat{{j}}$
Where $\alpha$ and $\beta$ are dimensional constants. The angular momentum of the particle becomes the same as it was for ${t}=0$ at time ${t}=$ .....$seconds.$