A particle of mass $m$ moves in the $XY$ plane with a velocity $V$ along the straight line $AB$ . If the angular momentum of the particle with respect to origin $O$ is $L_A$ when it is at $A$ and $L_B$ when it is at $B$ , then
$L_A < L_B$
$L_A = L_B$
$L_A \ne L_B$
the relationship between $L_A$ and $L_B$ depends upon the slope of the line $AB$
The torque of the force $\overrightarrow F = (2\hat i - 3\hat j + 4\hat k\,)N$ acting at the point $\overrightarrow {r\,} = (3\hat i + 2\hat j + 3\hat k)\,m$ about the origin be
A thin circular ring of mass $M$ and radius $R$ is rotating in a horizontal plane about an axis vertical to its plane with a constant angular velocity $\omega$. If two objects each of mass $m$ be attached gently to the opposite ends of a diameter of the ring, the ring will then rotate with an angular velocity
The moment of inertia of a sphere (mass $M$ and radius $R$) about it’s diameter is $I$. Four such spheres are arranged as shown in the figure. The moment of inertia of the system about axis $XX'$ will be
If a solid sphere is rolling the ratio of its rotational energy to the total kinetic energy is given by
In the following figure $r_1$ and $r_2$ are $5\,cm$ and $30\,cm$ respectively. If the moment of inertia of the wheel is $1500\,kg\,m^2$ then its angular acceleration will be (Approximately)