- Home
- Standard 11
- Physics
घर्षणहीन क्षैतिज तल पर पड़ी हुई $k$ बल स्थिरांक की द्रव्यमान रहित स्प्रिंग के एक सिरे से $m$ द्रव्यमान का कण जुड़ा हुआ है। इस स्प्रिंग का दूसरा सिरा बद्ध है। यह कण अपनी साम्यावस्था से समय $t=0$ पर प्रारम्भिक क्षैतिज वेग $u_0$ से गतिमान हो रहा है। जब कण की गति $0.5 u_0$ होती है, यह एक दृढ़ दीवार से प्रत्यास्थ संघट्ट करता है। इस संघट्ट के बाद -
$(A)$ जब कण अपनी साम्यावस्था से लौटता है इसकी गति $u_0$ होती है।
$(B)$ जब कण अपनी साम्यावस्था से पहली बार गुजरता है वह समय $t=\pi \sqrt{\frac{m}{k}}$ है।
$(C)$ जब स्प्रिंग से सम्पीड़न अधिकतम होता है वह समय $t =\frac{4 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
$(D)$ जब कण अपनी साम्यावस्था से दूसरी बार गुजरता है वह समय $t =\frac{5 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
$(B,D)$
$(B,C)$
$(A,C)$
$(A,D)$
Solution

Displacement $x = A \sin \omega t$
Velocity $v = A \omega \cos \omega t =\frac{\omega A }{2}$
At the time of collision
$\cos \omega t=\frac{1}{2} $
$\omega t=\frac{\pi}{3} \Rightarrow t=\frac{2 \pi}{3}=\frac{\pi}{3} \sqrt{\frac{m}{k}}$
$Image$
for $(C)$ $ \quad time$$ =\frac{2 \pi}{3} \sqrt{\frac{m}{k}}+\frac{\pi}{2} \sqrt{\frac{m}{k}} $
$ =\frac{5 \pi}{6} \sqrt{\frac{m}{k}}$(So it is incorrect)
for $(D)$ $\quad time \quad=\frac{2 \pi}{3} \sqrt{\frac{m}{k}}+\pi \sqrt{\frac{m}{k}} $
$ =\frac{5 \pi}{3} \sqrt{\frac{m}{k}} \text { (So it is correct). }$