$m $ દળના સાદા લોલક સાથે $m$ દળ અને $v_0$ વેગથી ગતિ કરતો કણ ચોંટી જાય છે.તો ગોળો કેટલી મહત્તમ ઊંચાઇ પ્રાપ્ત કરશે?
$ h = \frac{{V_0^2}}{{8g}} $
$ \sqrt {{V_0}g} $
$ 2\sqrt {\frac{{{V_0}}}{g}} $
$ \frac{{V_0^2}}{{4g}} $
$200\, ms^{-1}$ ની ઝડપથી ઉપર તરફ શિરોલંબ દિશામાં ગતિ કરતો પદાર્થ $490\, m$ ઊંચાઈએ બે સમાન ટુકડામાં વિભાજિત થાય છે. એક ટુકડો શિરોલંબ ઉપર તરફ $400\, ms^{-1}$ વેગ થી ગતિ શરૂ કરે છે. તો બીજા ટુકડા થી અલગ થયા પછી થી જમીન સુધી પહોંચવામાં કેટલા ............... $\mathrm{s}$ સમય લેશે?
આપેલ આકૃતિ અનુસાર, $250\,g$ ના બે ચોસલાઓને $2\,Nm^{-1}$ સ્પ્રિંગ અચળાંક ધરાવતી સ્પ્રિંગ સાથે જોડવામાં આવેલ છે. જો બંને વિરુદ્ધ દિશામાં $v$ જેટલો વેગ આપવામાં આવે તો સ્પ્રિંગમાં મહત્તમ વિસ્તરણ $...........$ જેટલું થશે.
હિલિયમ ભરેલ બલૂન ગુરુત્વાકર્ષણ બળ વિરુદ્ધ ઊંચે ચઢતાં તેની સ્થિતિઊર્જા વધે છે. જેમ-જેમ તે ઊંચે ચઢે તેમ-તેમ તેની ઝડપમાં પણ વધારો થાય છે. આ હકીકતનું યાંત્રિક ઊર્જા સંરક્ષણના નિયમ સાથે કેવી રીતે સમાધાન (સમજૂતી) કરશો ? હવાની ચાનતા અસરને અવગણો અને હવાની ઘનતા અચળ ધારો.
$m$ દળનો પદાર્થ $H$ ઊંચાઈએથી મુક્તપતન પામી ઉપરથી $h$ અંતર જેટલો નીચે આવે ત્યારે તેની કુલ યાંત્રિકઊર્જાનું સમીકરણ લખો.
કણોના તંત્રની ગતિનું દ્રવ્યમાન કેન્દ્રની ગતિ અને દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને ગતિમાં વિભાજન :
$(a)$ બતાવો કે $p = p_i^{\prime} + {m_i}V$
જ્યાં ${p_i}$ એ $i$ મા કણ ( ${m_i}$ દળના)નું વેગમાન અને $p_i^{\prime} = {m_i}v_i^{\prime} $
નોંધ $v_i^{\prime} $ દ્રવ્યમાન કેન્દ્રની સાપેક્ષે $i$ મા કણનો વેગ છે.
આ ઉપરાંત દ્રવ્યમાન કેન્દ્રની વ્યાખ્યાનો ઉપયોગ કરીને સાબિત કરો કે $\sum {p_i^{\prime} } = 0$
$(b)$ બતાવો કે $K=K^{\prime}+1 / 2 M V^{2}$
જ્યાં $K$ એ કણોના તંત્રની કુલ ગતિઊર્જા છે. $K'$ એ જ્યારે કણોના વેગોને દ્રવ્યમાન કેન્દ્રના સંદર્ભમાં લેવામાં આવે છે ત્યારની અને $M V^{2} / 2$ એ સમગ્ર તંત્રની સ્થાનાંતરણની ગતિ ઊર્જા છે. (એટલે કે તંત્રના દ્રવ્યમાન કેન્દ્રની ગતિ). આ પરિણામ પરિચ્છેદ માં ઉપયોગમાં લીધેલ છે.
$(c)$ દર્શાવો કે $L = L ^{\prime}+ R \times M V$ છે.
જ્યાં $L ^{\prime}=\sum r _{i}^{\prime} \times p _{i}^{\prime}$ એ તંત્રના દ્રવ્યમાન કેન્દ્રની સાપેક્ષે તંત્રનું કોણીય વેગમાન છે. જ્યાં વેગોને દ્રવ્યમાન કેન્દ્રની સાપેક્ષે લીધેલ છે. યાદ રાખો $r _{i}^{\prime}= r _{i}- R$; બાકીની બધી સંજ્ઞાઓ એ પ્રકરણમાં ઉપયોગમાં લેવાયેલ પ્રમાણભૂત સંજ્ઞાઓ છે. નોંધો $L'$ અને $M R \times V$ એ અનુક્રમે દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને તંત્રનું કોણીય વેગમાન અને કણોના તંત્રના દ્રવ્યમાન કેન્દ્રનું કોણીય વેગમાન કહેવામાં આવે છે.
$(d)$ બતાવો કે : = $\frac{d L ^{\prime}}{d t}=\sum r _{i}^{\prime} \times \frac{d p ^{\prime}}{d t}$
વધુમાં, દર્શાવો કે $\frac{d L ^{\prime}}{d t}=\tau_{e x t}^{\prime}$
જ્યાં $\tau_{c t t}^{\prime}$ એ આ તંત્ર પર દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને લાગતા તમામ બાહ્ય ટૉર્કનો સરવાળો છે. (સૂચના : દ્રવ્યમાન કેન્દ્રની વ્યાખ્યા અને ન્યૂટનના ત્રીજા નિયમનો ઉપયોગ કરો. એમ ધારો કે કોઈ પણ બે કણો વચ્ચે લાગતું આંતરિક બળ આ બે કણોને જોડતી રેખાની દિશામાં લાગે છે.)