- Home
- Standard 11
- Physics
A pendulume clock loses $12\;s$ a day if the temperature is $40^oC$ and gains $4\;s$ a day if the temperature is $20^oC$. The temperature at which the clock will show correct time, and the coeffecient of linear expansion $(\alpha)$ of the metal of the pendulum shaft are respectively
$30^o $ $C$ ,$\;\alpha $ $= 1.85 \times 10^{-3}/^o C$
$55^o C$ ,$\;\alpha $ $= 1.85 \times 10^{-2}/^o C$
$25^o C$ ,$\;\alpha $$ = 1.85 \times 10^{-5}/^o C$
$60^o $ $C$ ,$\;\alpha $ = $1.85 \times10^{-4}/^o C$
Solution
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{g}}}$
$\frac{\Delta \mathrm{T}}{\mathrm{T}}=\frac{1}{2} \frac{\Delta \ell}{\ell}$
When clock gain $12\, sec$
$\frac{12}{\mathrm{T}}=\frac{1}{2} \alpha(40-\theta)$ $…(1)$
When clock lose $4\, sec.$
$\frac{4}{\mathrm{T}}=\frac{1}{2} \alpha(\theta-20)$ $…(2)$
From equation $( 1)\&(2)$
$3=\frac{40-\theta}{\theta-20}$
$3 \theta-60=40-\theta$
$4 \theta=100$
$\theta=25^{\circ} \mathrm{C}$
from equation $( 1 )$
$\frac{12}{\mathrm{T}}=\frac{1}{2} \alpha(40-25)$
$\frac{12}{24 \times 3600}=\frac{1}{2} \alpha \times 15$
$\alpha=\frac{24}{24 \times 3600 \times 15}$
$\alpha=1.85 \times 10^{-15} /^{\circ} \mathrm{C}$
Similar Questions
In the following table relation of graph in column$-I$ and shape of graph in column$-II$ is shown match them appropriately.
column$-I$ | column $-II$ |
$(a)$ ${T^2} \to l$ | $(i)$ Linear |
$(b)$ ${T^2} \to g$ | $(ii)$ Parabolic |
$(c)$ ${T} \to l$ | $(iii)$ Hyperbolic |