The position of a projectile launched from the origin at $t=0$ is given by $\vec{r}=(40 \hat{i}+50 \hat{j}) m$ at $t=$ $2 s$. If the projectile was launched at an angle $\theta$ from the horizontal, then $\theta$ is (take $g =10\,ms ^{-2}$ )
A point moves in $x -y$ plane according to the law $x = 3\, cos\,4t$ and $y = 3\, (1 -sin\,4t)$. The distance travelled by the particle in $2\, sec$ is...........$m$ (where $x$ and $y$ are in $metres$ )
A fighter plane is flying horizontally at an altitude of $1.5\, km$ with speed $720\, km/h$. At what angle of sight (w.r.t. horizontal) when the target is seen, should the pilot drop the bomb in order to attack the target ?
The velocity- time graph of a body falling from rest under gravity and rebounding from a solid surface is represented by which of the following graphs?
A particle moves along a parabolic path $y=9 x^2$ in such a way that the $x$ component of velocity remains constant and has a value $\frac{1}{3}\,m / s$. The acceleration of the particle is $.......m / s ^2$