A physical quantity $X$ is given by $X = \frac{{2{k^3}{l^2}}}{{m\sqrt n }}$ The percentage error in the measurements of $k,\,l,\, m$ and $n$ are $1\%, 2\%, 3\%$ and $4\%$ respectively. The value of $X$ is uncertain by .......... $\%$
$8$
$10$
$12$
$14$
If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation $z=x / y$. If the errors in $x, y$ and $z$ are $\Delta x, \Delta y$ and $\Delta z$, respectively, then
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
The series expansion for $\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$, to first power in $\Delta y / y$, is $1 \mp(\Delta y / y)$. The relative errors in independent variables are always added. So the error in $z$ will be $\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right)$.
The above derivation makes the assumption that $\Delta x / x \ll<1, \Delta y / y \ll<1$. Therefore, the higher powers of these quantities are neglected.
($1$) Consider the ratio $r =\frac{(1- a )}{(1+ a )}$ to be determined by measuring a dimensionless quantity a.
If the error in the measurement of $a$ is $\Delta a (\Delta a / a \ll<1)$, then what is the error $\Delta r$ in
$(A)$ $\frac{\Delta a }{(1+ a )^2}$ $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$ $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$ $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$
($2$) In an experiment the initial number of radioactive nuclei is $3000$ . It is found that $1000 \pm$ 40 nuclei decayed in the first $1.0 s$. For $|x|<1$, In $(1+x)=x$ up to first power in $x$. The error $\Delta \lambda$, in the determination of the decay constant $\lambda$, in $s ^{-1}$, is
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
Give the answer or quetion ($1$) and ($2$)
In an experiment, the percentage of error occurred in the measurment of physical quantities $A, B, C$ and $D$ are $1 \%, 2 \%, 3 \%$ and $4 \%$ respectively. Then the maximum percentage of error in the measurement $X,$
where $X = \frac{{{A^2}{B^{\frac{1}{2}}}}}{{{C^{\frac{1}{3}}}{D^3}}}$, will be
The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{L / g}$ Measured value of $L$ is $20.0 \;cm$ known to $1\; mm$ accuracy and time for $100$ oscillations of the pendulum is found to be $90 \;s$ using a wrist watch of $1\; s$ resolution. What is the accuracy in the determination of $g in \% ?$
Two clocks are being tested against a standard clock located in a national laboratory. At $12: 00: 00$ noon by the standard clock, the readings of the two clocks are
$\begin{array}{ccc} & \text {Clock} 1 & \text {Clock} 2 \\ \text { Monday } & 12: 00: 05 & 10: 15: 06 \\ \text { Tuesday } & 12: 01: 15 & 10: 14: 59 \\ \text { Wednesday } & 11: 59: 08 & 10: 15: 18 \\ \text { Thursday } & 12: 01: 50 & 10: 15: 07 \\ \text { Friday } & 11: 59: 15 & 10: 14: 53 \\ \text { Saturday } & 12: 01: 30 & 10: 15: 24 \\ \text { Sunday } & 12: 01: 19 & 10: 15: 11\end{array}$
If you are doing an experiment that requires precision time interval measurements, which of the two clocks will you prefer?
The most accurate reading of the length of a $6.28 \,cm$ long fibre is ............... $cm$