- Home
- Standard 12
- Physics
A plane electromagnetic wave of wavelength $\lambda $ has an intensity $I.$ It is propagating along the positive $Y-$ direction. The allowed expressions for the electric and magnetic fields are given by
$\vec E\, = \,\sqrt {\frac{I}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y - ct)} \right]\,\hat i\,;\,\vec B\, = \,\frac{1}{c}E\hat k$
$\vec E\, = \,\sqrt {\frac{I}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y - ct)} \right]\,\hat k\,;\,\vec B\, = - \,\frac{1}{c}E\hat i$
$\vec E\, = \,\sqrt {\frac{{2I}}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y - ct)} \right]\,\hat k\,;\,\vec B\, = + \frac{1}{c}E\hat i$
$\vec E\, = \,\sqrt {\frac{{2I}}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y + ct)} \right]\,\hat k\,;\,\vec B\, = \frac{1}{c}E\hat i$
Solution
If $E_0$ is magnitude of electric field then $\frac{1}{2}\,{\varepsilon _0}{E_0}^2\, \times \,C\, = \,I\, \Rightarrow {\kern 1pt} {E_0}\, = \sqrt {\frac{{2I}}{{C{\varepsilon _0}}}} $
${B_0} = {\kern 1pt} \frac{{{E_0}}}{C}\,$
Direction of $\vec E \times \vec B$ will be along $ + \hat j.$