$\lambda$ तरंगदैर्ध्य की एक समतल विद्युत चुम्बकीय तरंग की तीव्रता $I$ है। यह धनात्मक $Y$-दिशा में गमन कर रही है। विद्युत तथा चुम्बकीय क्षेत्र के लिये दिये गये मान्य सम्बन्ध हैं
$\vec E\, = \,\sqrt {\frac{I}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y - ct)} \right]\,\hat i\,;\,\vec B\, = \,\frac{1}{c}E\hat k$
$\vec E\, = \,\sqrt {\frac{I}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y - ct)} \right]\,\hat k\,;\,\vec B\, = - \,\frac{1}{c}E\hat i$
$\vec E\, = \,\sqrt {\frac{{2I}}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y - ct)} \right]\,\hat k\,;\,\vec B\, = + \frac{1}{c}E\hat i$
$\vec E\, = \,\sqrt {\frac{{2I}}{{{\varepsilon _0}C}}} \cos \left[ {\frac{{2\pi }}{\lambda }(y + ct)} \right]\,\hat k\,;\,\vec B\, = \frac{1}{c}E\hat i$
एक समतल विधुत चुम्बकीय तरंग के लिये किसी बिन्दु $x$ व समय $t$ पर चुम्बकीय क्षेत्र
$\overrightarrow{ B }( x , t )=\left[1.2 \times 10^{-7} \sin \left(0.5 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ k }\right] T$
हे, तो $\overrightarrow{ B }$ के संगत विधुत क्षेत्र $\overrightarrow{ E }$ होगा
(प्रकाश की चाल $c =3 \times 10^{8} ms ^{-1}$ )
एक विद्युत-चुम्बकीय तरंग का संचरण $z-$अक्ष के समानान्तर होती है। स्थिति एवं समय परिवर्ती क्षेत्रों (Fields) का कौनसा जोड़ा इस तरंग को उत्पन्न करता है, स्थिति
एक समतल विधुतचुम्बकीय तरंग जिसकी आवत्ति $100\,MHz$ है $x$-अक्ष के अनुदिश निर्वात में गति कर रही है। समय और मुक्त आकाश में किसी विशेष बिन्दु पर, $\overrightarrow{ B }$ का मान $2.0 \times 10^{-8} \hat{ k }\, T$ है (जहाँ $\hat{ k }, z$-अक्ष के अनुदिश एकांक सदिश है) इस बिन्दु पर $\overrightarrow{ E }$ का मान होगा। (प्रकाश की चाल, $c =3 \times 10^{8}\, m / s$)
एक समतल विधुत चुम्बकीय तरंग में विधुत क्षेत्र $E =50 \sin \left(500 x -10 \times 10^{10} t \right)\, V / m$ दिया गया है। माध्यम में विधुतचुम्बकीय तरंग का वेग है।
(दिया है $C =$ निर्वात में प्रकाश की चाल)