8.Electromagnetic waves
hard

The magnetic field of a plane electromagnetic wave is given by

$\vec B\, = {B_0}\hat i\,[\cos \,(kz - \omega t)]\, + \,{B_1}\hat j\,\cos \,(kz - \omega t)$ where ${B_0} = 3 \times {10^{-5}}\,T$ and ${B_1} = 2 \times {10^{-6}}\,T$. The rms value of the force experienced by a stationary charge $Q = 10^{-4} \,C$ at $z = 0$ is closet to

A

$0.9\,N$

B

$3\times 10^{-2}\,N$

C

$0.1\,N$

D

$0.6\,N$

(JEE MAIN-2019)

Solution

Maximum electric field $E=(B)(C)$

$\overrightarrow{\mathrm{E}}_{0}=\left(3 \times 10^{-5}\right) \mathrm{c}(-\hat{\mathrm{j}})$

$\overrightarrow{\mathrm{E}}_{1}=\left(2 \times 10^{-6}\right) \mathrm{c}(-\hat{\mathrm{i}})$

Maximum force

$\overrightarrow{\mathrm{F}}_{\mathrm{net}}=10^{-4} \times 3 \times 10^{8} \sqrt{\left(3 \times 10^{-5}\right)^{2}+\left(2 \times 10^{-6}\right)^{2}}=0.9\, \mathrm{N}$

$\mathrm{F}_{\mathrm{ms}}=\frac{\mathrm{F}_{0}}{\sqrt{2}}=0.6\, \mathrm{N}$ (approx)

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.