A plane electromagnetic wave with frequency of $30 {MHz}$ travels in free space. At particular point in space and time, electric field is $6 {V} / {m}$. The magnetic field at this point will be ${x} \times 10^{-8} {T}$. The value of ${x}$ is ..... .
$1$
$2$
$4$
$20$
This question has Statement $-1$ and Statement $-2$ . Of the four choices given after the statements, choose the one that best describes the two statements
Statement $-1$ : Sky wave signals are used for long distance radio communication. These signals are in general, less stable than ground wave signals
Statement $-2$ : The state of ionosphere varies from hour to hour, day to day and season to season
If ${\varepsilon _0}$ and ${\mu _0}$ are respectively, the electric permittivity and the magnetic permeability of free space. $\varepsilon $ and $\mu $ the corresponding quantities in a medium, the refractive index of the medium is
The intensity of a light pulse travelling along a communication channel decreases exponentially with distance $x$ according to the relation $I = {I_0}{e^{ - \alpha x}}$ , where $I_0$ is the intensity at $x = 0$ and $\alpha $ is the attenuation constant. The attenuation in $dB/km$ for an optical fibre in which the intensity falls by $50$ percent over a distance of $50\ km$ is
Which scientist discarded postulate of ether?
A particle of mass $M$ and positive charge $Q$, moving with a constant velocity $\overrightarrow{ u }_1=4 \hat{ i } ms ^{-1}$, enters a region of uniform static magnetic field normal to the $x-y$ plane. The region of the magnetic field extends from $x=0$ to $x$ $=L$ for all values of $y$. After passing through this region, the particle emerges on the other side after $10$ milliseconds with a velocity $\overline{ u }_2=2(\sqrt{3} \hat{ i }+\hat{ j }) ms ^{-1}$. The correct statement$(s)$ is (are) :
$(A)$ The direction of the magnetic field is $-z$ direction.
$(B)$ The direction of the magnetic field is $+z$ direction
$(C)$ The magnitude of the magnetic field $\frac{50 \pi M }{3 Q }$ units.
$(D)$ The magnitude of the magnetic field is $\frac{100 \pi M}{3 Q}$ units.