Wavelength of light of frequency $100\;Hz$
$2 \times {10^6}\;m$
$3 \times {10^6}\;m$
$4 \times {10^6}\;m$
$5 \times {10^6}\;m$
An em wave is propagating in a medium with a velocity $\vec v =v\hat i.$ The instantaneous oscillating electric field of this em wave is along $+y$ axis. Then the direction of oscillating magnetic field of the em wave will be along
The electric field of a plane electromagnetic wave is given by $\overrightarrow{ E }= E _{0}(\hat{ x }+\hat{ y }) \sin ( kz -\omega t )$ Its magnetic field will be given by
If electric field intensity of a uniform plane electro magnetic wave is given as
$E =-301.6 \sin ( kz -\omega t ) \hat{a}_{ x }+452.4 \sin ( kz -\omega t )$ $\hat{a}_{y} \frac{V}{m}$
Then, magnetic intensity $H$ of this wave in $Am ^{-1}$ will be
[Given: Speed of light in vacuum $c =3 \times 10^{8} ms ^{-1}$, permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7} NA ^{-2}$ ]
Ratio of electric field and magnetic field gives which physical quantity ?
A TV tower has a height of 100 m. The average population density around the tower is 1000 per $km^2$. The radius of the earth is $6.4 \times {10^6}$m. the population covered by the tower is