A projectile is thrown into space so as to have maximum horizontal range $R$. Taking the point of projection as origin, the coordinates of the points where the speed of the particle is minimum are-
$(R, R)$
$\left( {R,\frac{R}{2}} \right)$
$\left( {\frac{R}{2},\frac{R}{4}} \right)$
$\left( {R,\frac{R}{4}} \right)$
A body of mass $1 \,kg$ is projected from ground at an angle $30^{\circ}$ with horizontal on a level ground at a speed $50 \,m / s$. The magnitude of change in momentum of the body during its flight is ....... $kg ms ^{-1}$ $\left(g=10 \,m / s ^2\right)$
Two cars of masses $m_1$ & $m_2$ are moving along the circular paths of radius $r_1$ & $r_2$ respectively. Their speeds are such that they complete one round in same time. The ratio of angular speeds of two cars is
If the instantaneous velocity of a particle projected as shown in figure is given by $v =a \hat{ i }+(b-c t) \hat{ j }$, where $a, b$, and $c$ are positive constants, the range on the horizontal plane will be
A stone is tied to a string of length $L$ is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed $u.$ The magnitude of the change in its velocity as it reaches a position where the string is horizontal is
An aircraft executes a horizontal loop with a speed of $150 \,m/s$ with its, wings banked at an angle of ${12^o }$. The radius of the loop is .......... $km$. $(g = 10\,\,m/{s^2})$