A proton (mass $m$ ) accelerated by a potential difference $V$ flies through a uniform transverse magnetic field $B.$ The field occupies a region of space by width $'d'$. If $\alpha $ be the angle of deviation of proton from initial direction of motion (see figure), the value of $sin\,\alpha $ will be
$qV\,\sqrt {\frac{{Bd}}{{2m}}} $
$\frac{B}{2}\sqrt {\frac{{qd}}{{mV}}} $
$\frac{B}{d}\sqrt {\frac{{q}}{{2mV}}} $
$Bd\sqrt {\frac{q}{{2mV}}} $
Two charged particles of mass $m$ and charge $q$ each are projected from origin simultaneously with same speed $V$ in transverse magnetic field. If ${\vec r_1}$ and ${\vec r_2}$ are the position vectors of particles (with respect to origin) at $t = \frac{{\pi m}}{{qB}}$ then the value of ${\vec r_1}.{\vec r_2}$ at that time is
Consider the motion of a positive point charge in a region where there are simultaneous uniform electric and magnetic fields $\vec{E}=E_0 \hat{j}$ and $\vec{B}=B_0 \hat{j}$. At time $t=0$, this charge has velocity $\nabla$ in the $x$-y plane, making an angle $\theta$ with $x$-axis. Which of the following option$(s)$ is(are) correct for time $t>0$ ?
$(A)$ If $\theta=0^{\circ}$, the charge moves in a circular path in the $x-z$ plane.
$(B)$ If $\theta=0^{\circ}$, the charge undergoes helical motion with constant pitch along the $y$-axis.
$(C)$ If $\theta=10^{\circ}$, the charge undergoes helical motion with its pitch increasing with time, along the $y$-axis.
$(D)$ If $\theta=90^{\circ}$, the charge undergoes linear but accelerated motion along the $y$-axis.
A proton moving with a constant velocity, passes through a region of space without change in its velocity. If $E$ $\& B$ represent the electric and magnetic fields respectively, this region may have
Two charges of same magnitude move in two circles of radii $R_1=R$ and $R_2=2 R$ in a region of constant uniform magnetic field $B _0$. The work $W_1$ and $W_2$ done by the magnetic field in the two cases respectively, are such that
A beam of electrons passes undeflected through mutually perpendicular electric and magnetic fields. It the electric field is switched off, and the same magnetic field is maintained, the electrons move