A proton of mass $1.67 \times {10^{ - 27}}\,kg$ and charge $1.6 \times {10^{ - 19}}\,C$ is projected with a speed of $2 \times {10^6}\,m/s$ at an angle of $60^\circ $ to the $X - $ axis. If a uniform magnetic field of $0.104$ $Tesla$ is applied along $Y - $ axis, the path of proton is
A circle of radius =$ 0.2 \,m$ and time period $\pi \times {10^{ - 7}}\,s$
A circle of radius = $0.1\, m$ and time period $2\pi \times {10^{ - 7}}\,s$
A helix of radius =$0.1 \,m $ and time period $2\pi \times {10^{ - 7}}\,s$
A helix of radius = $0.2\, m$ and time period $4\pi \times {10^{ - 7}}\,s$
An electron moving with a velocity ${\vec V_1} = 2\,\hat i\,\, m/s$ at a point in a magnetic field experiences a force ${\vec F_1} = - 2\hat j\,N$ . If the electron is moving with a velocity ${\vec V_2} = 2\,\hat j \,\,m/s$ at the same point, it experiences a force ${\vec F_2} = + 2\,\hat i\,N$ . The force the electron would experience if it were moving with a velocity ${\vec V_3} = 2\hat k$ $m/s$ at the same point is
An electron (mass = $9.1 \times {10^{ - 31}}$ $kg$; charge = $1.6 \times {10^{ - 19}}$ $C$) experiences no deflection if subjected to an electric field of $3.2 \times {10^5}$ $V/m$, and a magnetic fields of $2.0 \times {10^{ - 3}} \,Wb/m^2$. Both the fields are normal to the path of electron and to each other. If the electric field is removed, then the electron will revolve in an orbit of radius.......$m$
Electrons moving with different speeds enter a uniform magnetic field in a direction perpendicular to the field. They will move along circular paths.
A magnetic field
A block of mass $m$ $\&$ charge $q$ is released on a long smooth inclined plane magnetic field $B$ is constant, uniform, horizontal and parallel to surface as shown. Find the time from start when block loses contact with the surface.