A radioactive element has half life period $800$ years. After $6400$ years what amount will remain?

  • [AIPMT 1989]
  • A

    $\frac{1}{4}$

  • B

    $\frac{1}{16}$

  • C

    $\frac{1}{8}$

  • D

    $\frac{1}{256}$

Similar Questions

Two radioactive elements $R$ and $S$ disintegrate as
$R \rightarrow P + \alpha; \lambda_R = 4.5 × 10^{-3} \,\, years^{-1}$
$S \rightarrow P + \beta; \lambda_S = 3 × 10^{-3} \,\, years^{-1}$
Starting with number of atoms of $R$ and $S$ in the ratio of $2 : 1,$ this ratio after the lapse of three half lives of $R$ will be :

Mean life of a radioactive sample is $100$ seconds. Then its half life (in minutes) is

There are two radionuclei $A$ and $B.$ $A$ is an alpha emitter and $B$ is a beta emitter. Their distintegration constants are in the ratio of $1 : 2.$ What should be the ratio of number of atoms of two at time $t = 0$ so that probabilities of getting $\alpha$ and $\beta$ particles are same at time $t = 0.$

In a radioactive decay chain reaction, ${ }_{90}^{230} Th$ nucleus decays into ${ }_{84}^{214} Po$ nucleus. The ratio of the number of $\alpha$ to number of $\beta^{-}$particles emitted in this process is. . . . . 

  • [IIT 2022]

Half lives of two radioactive nuclei $A$ and $B$ are $10\, minutes$ and $20\, minutes$, respectively. If, initially a sample has equal number of nuclei, then after $60$ $minutes$ , the ratio of decayed numbers of nuclei $A$ and $B$ will be

  • [JEE MAIN 2019]