समीकरण $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,$वास्तविक) को संतुष्ट करने वाला $x$ का एक वास्तविक मान होगा, यदि
${\alpha ^2} - {\beta ^2} = - 1$
${\alpha ^2} - {\beta ^2} = 1$
${\alpha ^2} + {\beta ^2} = 1$
${\alpha ^2} - {\beta ^2} = 2$
माना कि$z$ एक सम्मिश्र संख्या है, तो समीकरण ${z^4} + z + 2 = 0$निम्न प्रकार का मूल नहीं रख सकता
यदि $\mathrm{z}=\alpha+\mathrm{i} \beta,|\mathrm{z}+2|=\mathrm{z}+4(1+\mathrm{i})$, तो $\alpha+\beta$ तथा $\alpha \beta$ किस समीकरण के मूल हैं ?
सम्मिश्र संख्या $\frac{{13 - 5i}}{{4 - 9i}}$का कोणांक है
सर्वसमिका $|z - 4|\, < \,|\,z - 2|$निम्न में किस क्षेत्र को निरूपित करती है
$(z + a)(\bar z + a)$ तुल्य है (जहाँ $a$ वास्तविक है)