- Home
- Standard 11
- Physics
પૃથ્વીની સપાટી પરથી $5\; km s^{-1}$ ની ઝડપે ઊર્ધ્વદિશામાં એક રૉકેટ છોડવામાં આવે છે. પૃથ્વી પર પાછા આવતા અગાઉ રોકેટ કેટલે દૂર સુધી જશે ? પૃથ્વીનું દળ $=6.0 \times 10^{24} \;kg ;$ પૃથ્વીની સરેરાશ ત્રિજ્યા $=6.4 \times 10^{6} \;m ; G=6.67 \times 10^{-11} \;N m ^{2} kg ^{2}$
Solution
Height reached by rocket mass, $m=h$
At the surface of the Earth,
Total energy of the rocket = Kinetic energy + Potential energy
$=\frac{1}{2} m v^{2}+\left(\frac{-G M_{c} m}{R_{e}}\right)$
At highest point $h$
$v=0$
And, Potential energy $=-\frac{ G M_{e} m}{R_{e}+h}$
$=0+\left(-\frac{ G M_{e} m}{ R _{e}+h}\right)=-\frac{ G M_{e} m}{ R _{e}+h}$
Total energy of the rocketi
From the law of conservation of energy, we have
Total energy of the rocket at the Earth's surface = Total energy at height $h$
$\frac{1}{2} m v^{2}+\left(-\frac{G M_{e} m}{R_{e}}\right)=-\frac{G M_{e} m}{R_{e}+h}$
$\frac{1}{2} v^{2}= G M_{e}\left(\frac{1}{R_{e}}-\frac{1}{R_{e}+h}\right)$
$= G M_{e}\left(\frac{R_{e}+h-R_{e}}{R_{e}\left(R_{e}+h\right)}\right)$
$\frac{1}{2} v^{2}=\frac{G M_{e} h}{R_{e}\left(R_{e}+h\right)} \times \frac{R_{e}}{R_{e}}$
$\frac{1}{2} \times v^{2}=\frac{g R_{e} h}{R_{e}+h}$
Where $g=\frac{G M}{R_{c}^{2}}=9.8 m / s ^{2}$ (Acceleration due to gravity on the Earth's surface) $\therefore v^{2}\left(R_{r}+h\right)=2 g R, h$
$v^{2} R_{t}=h\left(2 g R_{t}-v^{2}\right)$
$h=\frac{R_{e} v^{2}}{2 g R_{e}-v^{2}}$
$=\frac{6.4 \times 10^{6} \times\left(5 \times 10^{3}\right)^{2}}{2 \times 9.8 \times 6.4 \times 10^{6}-\left(5 \times 10^{3}\right)^{2}}$
$h=\frac{6.4 \times 25 \times 10^{12}}{100.44 \times 10^{6}}=1.6 \times 10^{6} m$
Height achieved by the rocket with respect to the centre of the Earth
$=R_{e}+h$
$=6.4 \times 10^{6}+1.6 \times 10^{6}$
$=8.0 \times 10^{6} m$