સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
$6$
$3$
$0$
એકપણ નહી.
જો $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, તો . . . .
જો $\left| \begin{array}{*{20}{c}}
{ - 2a}&{a + b}&{a + c}\\
{b + a}&{ - 2b}&{b + c}\\
{c + a}&{b + c}&{ - 2c}
\end{array}\right|$ $ = \alpha \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \ne 0$ તો $\alpha $ મેળવો.
જો ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,\theta }&{\cos \,\theta } \\
{\sin \,\theta }&{ - x}&1 \\
{\cos \,\theta }&1&x
\end{array}} \right|$ અને ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,2\theta }&{\cos \,\,2\theta } \\
{\sin \,2\theta }&{ - x}&1 \\
{\cos \,\,2\theta }&1&x
\end{array}} \right|$, $x \ne 0$ ;તો દરેક $\theta \in \left( {0,\frac{\pi }{2}} \right)$ માટે . . . .
સમીકરણની સંહતિ $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ ને એકાકી ઉકેલ ધરાવે તેનો આધાર . . . પર છે.
જો $[x]$ એ મહતમ પૃણાંક વિધેય છે , તો રેખીય સમીકરણો $[sin \,\theta ] x + [-cos\,\theta ] y = 0$ ; $[cot \,\theta ] x + y = 0$ માટે . . . .