- Home
- Standard 11
- Physics
द्रव्यमान $m$ के एक उपग्रह को पृथ्वी की सतह से ऊर्ध्वाधर दिशा में ऊपर की ओर $u$ गति से प्रक्षेपित किया जाता है। जब यह उपग्रह $R ( R =$ पृथ्वी की त्रिज्या $)$ की ऊँचाई पर पहुँचता है, तो यह $\frac{ m }{10}$ द्रव्यमान के एक रॉकेट का उत्क्षेपण (rejection) इस प्रकार से करता है कि उपग्रह तत्पश्चात् एक वृत्तीय कक्षा में चलने लगता है। उत्क्षेपित रॉकेट की गतिज ऊर्जा है ( $G$ गुरूत्त्वाकर्षण स्थिरांक व $M$ पृथ्वी का द्रव्यमान है):
$\frac{\mathrm{m}}{20}\left(\mathrm{u}-\sqrt{\frac{2 \mathrm{GM}}{3 \mathrm{R}}}\right)^{2}$
$5 \mathrm{m}\left(\mathrm{u}^{2}-\frac{119}{200} \frac{\mathrm{GM}}{\mathrm{R}}\right)$
$\frac{3 m}{8}\left(u+\sqrt{\frac{5 G M}{6 R}}\right)^{2}$
$\frac{m}{20}\left(u^{2}+\frac{113}{200} \frac{G M}{R}\right)$
Solution

Applying energy conservation
Applying energy conservation
${\mathrm{K}_{1}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}}$
${\frac{1}{2} \mathrm{mu}^{2}+\left(-\frac{\mathrm{GMm}}{\mathrm{R}}\right)=\frac{1}{2} \mathrm{mv}^{2}-\frac{\mathrm{GMm}}{2 \mathrm{R}}}$
$\mathrm{v}=\sqrt{\mathrm{u}^{2}-\frac{\mathrm{GM}}{\mathrm{R}}}$
By momentum conservation, we have
$\frac{\mathrm{m}}{10} \mathrm{v}_{\mathrm{T}}=\frac{9 \mathrm{m}}{10} \sqrt{\frac{\mathrm{GM}}{2 \mathrm{R}}}$
and $\frac{\mathrm{m}}{10} \mathrm{v}_{\mathrm{r}}=\mathrm{mv}$
$\Rightarrow \frac{\mathrm{m}}{10} \mathrm{v}_{\mathrm{r}}=\mathrm{m} \sqrt{\mathrm{u}^{2}-\frac{\mathrm{GM}}{\mathrm{R}}}$
Kinetic energy of rocket
${=\frac{1}{2} \mathrm{m}\left(\mathrm{v}_{\mathrm{T}}^{2}+\mathrm{v}_{\mathrm{r}}^{2}\right)}$
${=\frac{\mathrm{m}}{20}\left(81 \frac{\mathrm{GM}}{2 \mathrm{R}}+100 \mathrm{u}^{2}-100 \frac{\mathrm{GM}}{\mathrm{R}}\right)}$
${=\frac{\mathrm{m}}{20}\left(100 \mathrm{u}^{2}-\frac{119 \mathrm{GM}}{2 \mathrm{R}}\right)}$
${=5 \mathrm{m}\left(\mathrm{u}^{2}-\frac{119 \mathrm{GM}}{200 \mathrm{R}}\right)}$