14.Waves and Sound
medium

A sitar wire is replaced by another wire of same length and material but of three times the earlier radius. If the tension in the wire remains the same, by what factor will the frequency change ?

Option A
Option B
Option C
Option D

Solution

We have, $\mu=\frac{\mathrm{M}}{\mathrm{L}}=\frac{\mathrm{V} \rho}{\mathrm{L}}=\frac{\mathrm{AL} \rho}{\mathrm{L}}=\mathrm{A} \rho$

$\therefore m=\left(\pi r^{2}\right) \rho$

$\ldots(1)$

Now, we have, $f=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{T}}{\mu}}$

$\therefore f=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{T}}{\pi r^{2} \rho}} \Rightarrow f \propto \frac{1}{r}$

( $\because$ other factors are constants)

$\therefore \frac{f_{1}}{f_{2}}=\frac{r_{2}}{r_{1}}=\frac{3}{1} \quad\left(\because r_{2}=3 r_{1}\right)$

$\therefore f_{2}=\left(\frac{1}{3}\right) f_{1}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.