- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
medium
A solid cylinder of mass $M$ and radius $R$ rolls down an inclined plane without slipping. The speed of its centre of mass when it reaches the bottom is ...
A
$\sqrt {2gh} $
B
$\sqrt {\frac{4}{3}gh} $
C
$\sqrt {\frac{3}{4}gh} $
D
$\sqrt {4\frac{g}{h}} $
Solution
Potential energy of the solid cylinder at height $\mathrm{h}=\mathrm{Mgh}$
$K.E.$ of centre of mass when reached at bottom
$=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} M v^{2}+\frac{1}{2} M k^{2} v^{2} / R^{2}$
$=\frac{1}{2} M v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)$
For a solid cylinder $\frac{k^{2}}{R^{2}}=\frac{1}{2}$
$\therefore \quad \mathrm{K.E.}=\frac{3}{4} M v^{2}$
$\therefore \quad M g h=\frac{3}{4} M v^{2}$
$v=\sqrt{\frac{4}{3} g h}$
Standard 11
Physics
Similar Questions
medium