6.System of Particles and Rotational Motion
hard

A solid sphere and solid cylinder of identical radii approach an incline with the same linear velocity (see figure). Both roll without slipping all throughout. The two climb maximum heights $h_{sph}$ and $h_{cyl}$ on the incline. The radio $\frac{{{h_{sph}}}}{{{h_{cyl}}}}$ is given by

A

$1$

B

$\frac{4}{5}$

C

$\frac{2}{{\sqrt 5 }}$

D

$\frac{14}{15}$

(JEE MAIN-2019)

Solution

For solid sphere

$\frac{1}{2}m{v^2} + \frac{1}{2} \cdot \frac{1}{2}m{R^2} \cdot \frac{{{V^2}}}{{{R^2}}} = mg{h_{sph}}$

For solid cylinder

$\frac{1}{2}m{V^2} + \frac{1}{2} \cdot \frac{1}{2}m{R^2} \cdot \frac{{{V^2}}}{{{R^2}}} = mg{h_{cyl}}$

$ \Rightarrow \frac{{{h_{sph}}}}{{{h_{cyl}}}} = \frac{{7/5}}{{3/2}} = \frac{{14}}{{15}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.