एक ठोस गोला तथा एक ठोस बेलन जिनकी त्रिज्यायें समान है, एक आनत तल की तरफ समान रेखीय वेग से जा रहे हैं (चित्र देखें)। शुरू से अंत तक दोनों बिना फिसले लुढ़कते हुये चलते हैं। ये आनत तल पर अधिकतम ऊँचाई $h _{ sph }$ तथा $h _{ cyl }$ तक चढ़ पाते हैं तो अनुपात $\frac{h_{\text {sph }}}{h_{\text {cyl }}}$ होगा।

821-1261

  • [JEE MAIN 2019]
  • A

    $1$

  • B

    $\frac{4}{5}$

  • C

    $\frac{2}{{\sqrt 5 }}$

  • D

    $\frac{14}{15}$

Similar Questions

$500 \,g$ द्रव्यमान का एक एकसमान गोला बिना फिसले हुए एक क्षैतिज समतल सतह पर लुढ़कता हुआ चल रहा है (rolls without slipping) तथा इसके द्रव्यमान केन्द्र की गति $5.00 \,cm / s$ है। गोले की गतिज ऊर्जा है?

  • [JEE MAIN 2020]

यदि किसी वस्तु का जड़त्व आघूर्ण ‘$I$’ तथा कोणीय वेग ‘ $ \omega $ ’ हो तब इसकी घूर्णन गतिज ऊर्जा होगी

जैसा कि चित्र में दिखाया गया है, $m$ द्रव्यमान के गोलक को एक द्रव्यमानरहित डोर से लटकाया गया है। डोर को दूसरी ओर एक उपचक्र की त्रिज्या $r$ और द्रव्यमान $m$ है। जब गोलक को विरामावस्था से छोडा जाता है तो यह ऊर्ध्वाधर दिशा में गिरने लगता है। इस प्रकार गिरते हुए जब गोलक $h$ दूरी तय कर ले तो उपचक्र की कोणीय गति होगी।

  • [JEE MAIN 2020]

एक पिण्ड का दिये गये अक्ष के परितः जड़त्व आघूर्ण $1.5\, kg\, m^2$ है। आरम्भ में पिण्ड विरामावस्था में है। $1200\, J$ की घूर्णन गतिज ऊर्जा उत्पन्न करने के लिये, उसी अक्ष के परितः $20\, rad / s ^{2}$ का कोणिय त्वरण कितने समयान्तराल तक लगाना होगा ।($s$ में)

  • [JEE MAIN 2019]

$m_1$ और $m_2$ द्रव्यमान के दो पिंडों $\left(m_1 > m_2\right)$ को अतन्य हल्की डोरी से जोड़ा जाता है. यह डोरी एक पुली (pully), जिसकी त्रिज्या $R$ तथा उसके घूर्णन अक्ष के सापेक्ष जड़त्व आघूर्ण $I$ है, के ऊपर से गुजरती है. डोरी पुली पर फिसलती नहीं है और पुली बिना घर्षण के घूमती है. इन पिडों को विश्रामावस्था से एक दूसरे से उध्र्वाधर ऊचाई $2 h$ से छोड़ा जाता है. जब दोनों पिड एक दूसरे के पास से गुजरते हैं तो उसकी गति निम्न में से किसके समानुपाती होगी?

  • [KVPY 2016]