A solid square plate is spun around different axes with the same angular speed. In which of the following choice of axis of rotation will the kinetic energy of the plate be the largest?
Through the centre, normal to the plate
Along one of the diagonals of the plate
Along one of the edges of the plate
Through one corner normal to the plate
The speed of a homogeneous solid sphere after rolling down an inclined plane of vertical height $h$, from rest without sliding, is
Two point masses of $0.3\ kg$ and $0.7\ kg$ are fixed at the ends of a rod of length $1.4\ m$ and of negligible mass. The rod is set rotating about an axis perpendicular to its length with a uniform angular speed. The point on the rod through which the axis should pass in order that the work required for rotation of the rod is minimum is located at a distance of
A wheel is rotating with an angular speed of $20\,rad/sec$. It is stopped to rest by applying a constant torque in $4\ s$. If the moment of inertia of the wheel about its axis is $0.20\ kg-m^2$, then the work done by the torque in two seconds will be .......... $J$
A solid cylinder $P$ rolls without slipping from rest down an inclined plane attaining a speed $v_p$ at the bottom. Another smooth solid cylinder $Q$ of same mass and dimensions slides without friction from rest down the inclined plane attaining a speed $v_q$ at the bottom. The ratio of the speeds $\frac{v_q}{v_p}$ is
A circular disc of moment of inertia $I_t$, is rotating in a horizontal plane, about its symmetry axis, with a constant angular speed $\omega_i$ . Another disc of moment of inertia $l_b$ is dropped coaxially onto the rotating disc. Initially the second disc has zero angular speed. Eventually both the discs rotate with a constant angular speed $\omega_f$. The energy lost by the initially rotating disc to friction is