- Home
- Standard 11
- Physics
A spherical solid ball of volume $V$ is made of a material of density $\rho_1$. It is falling through a liquid of density $\rho_1 (\rho_2 < \rho_1)$. Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed $v$, i.e., $F_{viscous} = -kv^2 (k > 0)$. The terminal speed of the ball is
$\sqrt {\frac{{Vg\left( {{\rho _1} - {\rho _2}} \right)}}{k}}$
$\frac{{Vg{\rho _1}}}{k}$
$\sqrt {\frac{{Vg{\rho _1}}}{k}}$
$\frac{{Vg\left( {{\rho _1} - {\rho _2}} \right)}}{k}$
Solution

The condition for terminal speed $\left( {{v_t}} \right)$ is Weight $=$ Buoyant force $+$ Viscous force
$\therefore \mathrm{V} \rho_{1} \mathrm{g}=\mathrm{V} \rho_{2} \mathrm{g}+\mathrm{kv}_{t}^{2}$
$\therefore \mathrm{v}_{\mathrm{t}}=\sqrt{\frac{\mathrm{Vg}\left(\rho_{1}-\rho_{2}\right)}{\mathrm{k}}}$