9-1.Fluid Mechanics
normal

A square hole of side length $l$ is made at a depth of $h$ and a circular hole of radius $r$ is made at a depth of $4\,h$ from the surface of water in a water tank kept on a horizontal surface. If $l << h,\,r << h$ and the rate of water flow from the holes is the same, then $r$ is equal to

A

$\frac{l}{{\sqrt {2\pi } }}$

B

$\frac{l}{{\sqrt {3\pi } }}$

C

$\frac{l}{{{3\pi } }}$

D

$\frac{l}{{{2\pi } }}$

Solution

$As\,{A_1}{V_1} = {A_2}{V_2}\left( {principle\,of\,continuity} \right)$

$or,\,{\ell ^2}\sqrt {2gh}  = \pi {r^2}\sqrt {2g \times 4h} $

                                          $\left( {Efflux\,velocity = \sqrt {2gh} } \right)$

$\therefore \,{r^2} = \frac{{{\ell ^2}}}{{2\pi }}$       or       $r = \sqrt {\frac{{{\ell ^2}}}{{2\pi }}}  = \frac{\ell }{{\sqrt {2\pi } }}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.