A steel rod of length $1\,m$ and cross sectional area $10^{-4}\,m ^2$ is heated from $0^{\circ}\,C$ to $200^{\circ}\,C$ without being allowed to extend or bend. The compressive tension produced in the rod is $........\times 10^4\,N$ (Given Young's modulus of steel $=2 \times 10^{11}\,Nm ^{-2}$, coefficient of linear expansion $=10^{-5}\, K ^{-1}$.
$4$
$3$
$2$
$1$
A steel ring of radius $r$ and cross-section area $‘A’$ is fitted on to a wooden disc of radius $R(R > r)$. If Young's modulus be $E,$ then the force with which the steel ring is expanded is
Young's modulus of elasticity of material depends upon
When a stress of $10^8\,Nm^{-2}$ is applied to a suspended wire, its length increases by $1 \,mm$. Calculate Young’s modulus of wire.
A load of $2 \,kg$ produces an extension of $1 \,mm$ in a wire of $3 \,m$ in length and $1 \,mm$ in diameter. The Young's modulus of wire will be .......... $Nm ^{-2}$
What is Young’s modulus ? Explain. and Give its unit and dimensional formula.