$12.0\, m$ लंबे स्टील के तार का द्रव्यमान $2.10\, kg$ है । तार में तनाव कितना होना चाहिए ताकि उस तार पर किसी अनुप्रस्थ तरंग की चाल $20^{\circ} C$ पर शुष्क वायु में ध्वनि की चाल $\left(343\, m s ^{-1}\right)$ के बराबर हो ।
$9.5 \times 10^{4} \;N$
$2.06 \times 10^{4} \;N$
$5.12 \times 10^{3} \;N$
$4.8 \times 10^{5} \;N$
दोनों सिरों पर परिबद्ध किसी तानित डोरी पर अनुप्रस्थ विस्थापन को इस प्रकार व्यक्त किया गया है
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$
जिसमें $x$ तथा $y$ को $m$ तथा $t$ को $s$ में लिया गया है । इसमें डोरी की लंबाई $1.5 \,m$ है जिसकी संहति $3.0 10^{-2}\, kg$ है । निम्नलिखित का उत्तर दीजिए :
$(a)$ यह फलन प्रगामी तरंग अथवा अप्रगामी तरंग में से किसे निरूपित करता है ?
$(b)$ इसकी व्याख्या विपरीत दिशाओं में गमन करती दो तरंगों के अध्यारोपण के रूप में करते हुए प्रत्येक तरंग की तरंगदैर्ध्य , आवृत्ति तथा चाल ज्ञात कीजिए
$(c)$ डोरी में तनाव ज्ञात कीजिए
दोंनो सिरों पर परिबद्ध क्षैतिज तनित डोरी पाँचवी गुणवृत्ति समीकरण, $y(x, t)=(0.01 m ) \sin \left[\left(62.8 m ^{-1}\right) x \right] \cos \left[\left(628 s ^{-1}\right) t \right]$ द्वारा कम्पित हो रही है। यदि $\pi=3.14$ मान जाये तब निम्न प्रकथन सही है हैं -
$(A)$ निस्पंदो की संख्या $5$ है।
$(B)$ डोरी की लम्बाई $0.25 \ m$ है।
$(C)$ साम्यावस्था से डोरी के मध्य बिन्दु का अधिकतम विस्थापन $0.01 \ m$ है।
$(D)$ मूल आवृत्ति $100 \ Hz$ है।
किसी एकसमान तार का प्रति एकांक लम्बाई द्रव्यमान $0.135\; g / cm$ है। इस तार में कोई अनुप्रस्थ तरंग उत्पन्न होती है जिसका निरूपण समीकरण $y =-0.21 \sin ( x +30 t )$ द्वारा किया गया है, यहाँ $x$ मीटर में तथा $t$ सेकण्ड में है। तार मे तनाव का अपेक्षित मान $x \times 10^{-2} \;N$ है। $x$ का मान $\dots$ होगा। (निकटतम संभावित पूर्णांक तक)
द्रव की सतह पर बनने वाली यांत्रिक तरंगें हैं
निम्न चित्र में प्रदर्शित स्पन्दन (pulse) $P$ दृढ़ आधार से परावर्तित होती है $A, B, C$ और $D$ में से कौन परावर्तित स्पन्दन को व्यक्त करेगा