A steel wire of length $4.7\; m$ and cross-sectional area $3.0 \times 10^{-5}\; m ^{2}$ stretches by the same amount as a copper wire of length $3.5\; m$ and cross-sectional area of $4.0 \times 10^{-5} \;m ^{2}$ under a given load. What is the ratio of the Young's modulus of steel to that of copper?
Length of the steel wire, $L_{1}=4.7 m$
Area of cross-section of the steel wire, $A_{1}=3.0 \times 10^{-5} m ^{2}$
Length of the copper wire, $L_{2}=3.5 m$
Area of cross-section of the copper wire, $A_{2}=4.0 \times 10^{-5} m ^{2}$
Change in length $=\Delta L_{1}=\Delta L_{2}=\Delta L$
Force applied in both the cases $=F$
Young's modulus of the steel wire:
$Y_{1}=\frac{F_{1}}{A_{1}} \times \frac{L_{1}}{\Delta L}$
$=\frac{F \times 4.7}{3.0 \times 10^{-5} \times \Delta L} \ldots(i)$
Young's modulus of the copper wire:
$Y_{2}=\frac{F_{2}}{A_{2}} \times \frac{L_{2}}{\Delta L_{2}}$
$=\frac{F \times 3.5}{4.0 \times 10^{-5} \times \Delta L}\dots (ii)$
Dividing ($i$) by ($ii$), we get:
$\frac{Y_{1}}{Y_{2}}=\frac{4.7 \times 4.0 \times 10^{-5}}{3.0 \times 10^{-5} \times 3.5}=1.79: 1$
The ratio of Young's modulus of steel to that of copper is $1.79: 1$
The Young's modulus of a wire of length $L$ and radius $r$ is $Y$. If the length is reduced to $\frac{L}{2}$ and radius is $\frac{r}{2}$ , then the Young's modulus will be
The maximum elongation of a steel wire of $1 \mathrm{~m}$ length if the elastic limit of steel and its Young's modulus, respectively, are $8 \times 10^8 \mathrm{~N} \mathrm{~m}^{-2}$ and $2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$, is:
A rigid bar of mass $15\; kg$ is supported symmetrically by three wires each $2.0\; m$ long. Those at each end are of copper and the middle one is of iron. Determine the ratios of their diameters if each is to have the same tension.
A wire of length $L$ and radius $r$ is rigidly fixed at one end. On stretching the other end of the wire with a force $F$, the increase in its length is $l$. If another wire of same material but of length $2L$ and radius $2r$ is stretched with a force of $2F$, the increase in its length will be
A uniform metallic wire is elongated by $0.04\, m$ when subjected to a linear force $F$. The elongation, if its length and diameter is doubled and subjected to the same force will be ..... $cm .$