A steel wire of length $4.7\; m$ and cross-sectional area $3.0 \times 10^{-5}\; m ^{2}$ stretches by the same amount as a copper wire of length $3.5\; m$ and cross-sectional area of $4.0 \times 10^{-5} \;m ^{2}$ under a given load. What is the ratio of the Young's modulus of steel to that of copper?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Length of the steel wire, $L_{1}=4.7 m$

Area of cross-section of the steel wire, $A_{1}=3.0 \times 10^{-5} m ^{2}$

Length of the copper wire, $L_{2}=3.5 m$

Area of cross-section of the copper wire, $A_{2}=4.0 \times 10^{-5} m ^{2}$

Change in length $=\Delta L_{1}=\Delta L_{2}=\Delta L$

Force applied in both the cases $=F$

Young's modulus of the steel wire:

$Y_{1}=\frac{F_{1}}{A_{1}} \times \frac{L_{1}}{\Delta L}$

$=\frac{F \times 4.7}{3.0 \times 10^{-5} \times \Delta L} \ldots(i)$

Young's modulus of the copper wire:

$Y_{2}=\frac{F_{2}}{A_{2}} \times \frac{L_{2}}{\Delta L_{2}}$

$=\frac{F \times 3.5}{4.0 \times 10^{-5} \times \Delta L}\dots (ii)$

Dividing ($i$) by ($ii$), we get:

$\frac{Y_{1}}{Y_{2}}=\frac{4.7 \times 4.0 \times 10^{-5}}{3.0 \times 10^{-5} \times 3.5}=1.79: 1$

The ratio of Young's modulus of steel to that of copper is $1.79: 1$

Similar Questions

A rubber pipe of density $1.5 \times {10^3}\,N/{m^2}$ and Young's modulus $5 \times {10^6}\,N/{m^2}$ is suspended from the roof. The length of the pipe is $8 \,m$. What will be the change in length due to its own weight

The Young's modulus of a wire of length $L$ and radius $r$ is $Y$. If the length is reduced to $\frac{L}{2}$ and radius is $\frac{r}{2}$ , then the Young's modulus will be

A uniformly tapering conical wire is made from a material of Young's modulus $Y$  and has a normal, unextended length $L.$ The radii, at the upper and lower ends of this conical wire, have values $R$ and $3R,$  respectively. The upper end of the wire is fixed to a rigid support and a mass $M$ is suspended from its lower end. The equilibrium extended length, of this wire, would equal 

  • [JEE MAIN 2016]

As shown in the figure, in an experiment to determine Young's modulus of a wire, the extension-load curve is plotted. The curve is a straight line passing through the origin and makes an angle of $45^{\circ}$ with the load axis. The length of wire is $62.8\,cm$ and its diameter is $4\,mm$. The Young's modulus is found to be $x \times$ $10^4\,Nm ^{-2}$. The value of $x$ is

  • [JEE MAIN 2023]

A wire of length $L$ and radius $r$ is rigidly fixed at one end. On stretching the other end of the wire with a force $F$, the increase in its length is $l$. If another wire of same material but of length $2L$ and radius $2r$ is stretched with a force of $2F$, the increase in its length will be

  • [AIIMS 1980]