A steel wire of length $4.7\; m$ and cross-sectional area $3.0 \times 10^{-5}\; m ^{2}$ stretches by the same amount as a copper wire of length $3.5\; m$ and cross-sectional area of $4.0 \times 10^{-5} \;m ^{2}$ under a given load. What is the ratio of the Young's modulus of steel to that of copper?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Length of the steel wire, $L_{1}=4.7 m$

Area of cross-section of the steel wire, $A_{1}=3.0 \times 10^{-5} m ^{2}$

Length of the copper wire, $L_{2}=3.5 m$

Area of cross-section of the copper wire, $A_{2}=4.0 \times 10^{-5} m ^{2}$

Change in length $=\Delta L_{1}=\Delta L_{2}=\Delta L$

Force applied in both the cases $=F$

Young's modulus of the steel wire:

$Y_{1}=\frac{F_{1}}{A_{1}} \times \frac{L_{1}}{\Delta L}$

$=\frac{F \times 4.7}{3.0 \times 10^{-5} \times \Delta L} \ldots(i)$

Young's modulus of the copper wire:

$Y_{2}=\frac{F_{2}}{A_{2}} \times \frac{L_{2}}{\Delta L_{2}}$

$=\frac{F \times 3.5}{4.0 \times 10^{-5} \times \Delta L}\dots (ii)$

Dividing ($i$) by ($ii$), we get:

$\frac{Y_{1}}{Y_{2}}=\frac{4.7 \times 4.0 \times 10^{-5}}{3.0 \times 10^{-5} \times 3.5}=1.79: 1$

The ratio of Young's modulus of steel to that of copper is $1.79: 1$

Similar Questions

The Young's modulus of a wire of length $L$ and radius $r$ is $Y$. If the length is reduced to $\frac{L}{2}$ and radius is $\frac{r}{2}$ , then the Young's modulus will be

The maximum elongation of a steel wire of $1 \mathrm{~m}$ length if the elastic limit of steel and its Young's modulus, respectively, are $8 \times 10^8 \mathrm{~N} \mathrm{~m}^{-2}$ and $2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$, is:

  • [NEET 2024]

A rigid bar of mass $15\; kg$ is supported symmetrically by three wires each $2.0\; m$ long. Those at each end are of copper and the middle one is of iron. Determine the ratios of their diameters if each is to have the same tension.

A wire of length $L$ and radius $r$ is rigidly fixed at one end. On stretching the other end of the wire with a force $F$, the increase in its length is $l$. If another wire of same material but of length $2L$ and radius $2r$ is stretched with a force of $2F$, the increase in its length will be

  • [AIIMS 1980]

A uniform metallic wire is elongated by $0.04\, m$ when subjected to a linear force $F$. The elongation, if its length and diameter is doubled and subjected to the same force will be ..... $cm .$

  • [JEE MAIN 2021]