A steel wire of length $4.7\; m$ and cross-sectional area $3.0 \times 10^{-5}\; m ^{2}$ stretches by the same amount as a copper wire of length $3.5\; m$ and cross-sectional area of $4.0 \times 10^{-5} \;m ^{2}$ under a given load. What is the ratio of the Young's modulus of steel to that of copper?
Length of the steel wire, $L_{1}=4.7 m$
Area of cross-section of the steel wire, $A_{1}=3.0 \times 10^{-5} m ^{2}$
Length of the copper wire, $L_{2}=3.5 m$
Area of cross-section of the copper wire, $A_{2}=4.0 \times 10^{-5} m ^{2}$
Change in length $=\Delta L_{1}=\Delta L_{2}=\Delta L$
Force applied in both the cases $=F$
Young's modulus of the steel wire:
$Y_{1}=\frac{F_{1}}{A_{1}} \times \frac{L_{1}}{\Delta L}$
$=\frac{F \times 4.7}{3.0 \times 10^{-5} \times \Delta L} \ldots(i)$
Young's modulus of the copper wire:
$Y_{2}=\frac{F_{2}}{A_{2}} \times \frac{L_{2}}{\Delta L_{2}}$
$=\frac{F \times 3.5}{4.0 \times 10^{-5} \times \Delta L}\dots (ii)$
Dividing ($i$) by ($ii$), we get:
$\frac{Y_{1}}{Y_{2}}=\frac{4.7 \times 4.0 \times 10^{-5}}{3.0 \times 10^{-5} \times 3.5}=1.79: 1$
The ratio of Young's modulus of steel to that of copper is $1.79: 1$
A rubber pipe of density $1.5 \times {10^3}\,N/{m^2}$ and Young's modulus $5 \times {10^6}\,N/{m^2}$ is suspended from the roof. The length of the pipe is $8 \,m$. What will be the change in length due to its own weight
The Young's modulus of a wire of length $L$ and radius $r$ is $Y$. If the length is reduced to $\frac{L}{2}$ and radius is $\frac{r}{2}$ , then the Young's modulus will be
A uniformly tapering conical wire is made from a material of Young's modulus $Y$ and has a normal, unextended length $L.$ The radii, at the upper and lower ends of this conical wire, have values $R$ and $3R,$ respectively. The upper end of the wire is fixed to a rigid support and a mass $M$ is suspended from its lower end. The equilibrium extended length, of this wire, would equal
As shown in the figure, in an experiment to determine Young's modulus of a wire, the extension-load curve is plotted. The curve is a straight line passing through the origin and makes an angle of $45^{\circ}$ with the load axis. The length of wire is $62.8\,cm$ and its diameter is $4\,mm$. The Young's modulus is found to be $x \times$ $10^4\,Nm ^{-2}$. The value of $x$ is
A wire of length $L$ and radius $r$ is rigidly fixed at one end. On stretching the other end of the wire with a force $F$, the increase in its length is $l$. If another wire of same material but of length $2L$ and radius $2r$ is stretched with a force of $2F$, the increase in its length will be