A stone is tied to an elastic string of negligible mass and spring constant $k$. The unstretched length of the string is $L$ and has negligible mass. The other end of the string is fixed to a nail at a point $P$. Initially the stone is at the same level as the point $P$. The stone is dropped vertically from point $P$.
$(a)$ Find the distance $'y'$ from the top when the mass comes to rest for an instant, for the first time.
$(b)$ What is the maximum velocity attained by the stone in this drop ?
$(c)$ What shall be the nature of the motion after the stone has reached its lowest point ?
Consider the diagram, the stone is dropped from point $P$.
$(a)$ Stone is in free fall upto length L. After that elasticity of string exerted force for $SHM$. Suppose, stone is at rest at instantaneous distance ' $\mathrm{y}$ '.
Loss in potential energy of stone $=$ Gain in elastic potential energy in string.
$m g y=\frac{1}{2} k(y-\mathrm{L})^{2}$
$\therefore m g y=\frac{1}{2} k y^{2}-k y \mathrm{~L}+\frac{1}{2} k \mathrm{~L}^{2}$
$\Rightarrow \frac{1}{2} k y^{2}-(k \mathrm{~L}+m g) y+\frac{1}{2} k \mathrm{~L}^{2}=0$
$y=\frac{(k \mathrm{~L}+m g) \pm \sqrt{(k \mathrm{~L}+m g)^{2}-k^{2} \mathrm{~L}^{2}}}{k}$
$\therefore y=\frac{(k \mathrm{~L}+m g) \pm \sqrt{2 m g k \mathrm{~L}+m^{2} g^{2}}}{k}$
$\therefore y=\frac{(k \mathrm{~L}+m g)+\sqrt{2 m g k \mathrm{~L}+m^{2} g^{2}}}{k}$
A uniform plank of Young’s modulus $Y $ is moved over a smooth horizontal surface by a constant horizontal force $F.$ The area of cross section of the plank is $A.$ The compressive strain on the plank in the direction of the force is
Two exactly similar wires of steel and copper are stretched by equal forces. If the total elongation is $2 \,cm$, then how much is the elongation in steel and copper wire respectively? Given, $Y_{\text {steel }}=20 \times 10^{11} \,dyne / cm ^2$, $Y_{\text {copper }}=12 \times 10^{11} \,dyne / cm ^2$
Young's modulus is determined by the equation given by $\mathrm{Y}=49000 \frac{\mathrm{m}}{\ell} \frac{\text { dyne }}{\mathrm{cm}^2}$ where $\mathrm{M}$ is the mass and $\ell$ is the extension of wre used in the experiment. Now error in Young modules $(\mathrm{Y})$ is estimated by taking data from $M-\ell$ plot in graph paper. The smallest scale divisions are $5 \mathrm{~g}$ and $0.02$ $\mathrm{cm}$ along load axis and extension axis respectively. If the value of $M$ and $\ell$ are $500 \mathrm{~g}$ and $2 \mathrm{~cm}$ respectively then percentage error of $\mathrm{Y}$ is :
If the ratio of lengths, radii and Young's moduli of steel and brass wires in the figure are $a, b$ and $c$ respectively, then the corresponding ratio of increase in their lengths is
When a certain weight is suspended from a long uniform wire, its length increases by one $cm$. If the same weight is suspended from another wire of the same material and length but having a diameter half of the first one, the increase in length will be ......... $cm$