Two wires of same length and radius are joined end to end and loaded. The Young's modulii of the materials of the two wires are $Y_{1}$ and $Y_{2}$. The combination behaves as a single wire then its Young's modulus is:
$y=\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}}$
$y=\frac{2 Y_{1} Y_{2}}{3\left(Y_{1}+Y_{2}\right)}$
$Y=\frac{2 Y_{1} Y_{2}}{Y_{1}+Y_{2}}$
${Y}=\frac{{Y}_{1} {Y}_{2}}{2\left({Y}_{1}+{Y}_{2}\right)}$
Young's modules of material of a wire of length ' $L$ ' and cross-sectional area $A$ is $Y$. If the length of the wire is doubled and cross-sectional area is halved then Young's $modules$ will be :
A rod of length $1.05\; m$ having negligible mass is supported at its ends by two wires of steel (wire $A$) and aluminium (wire $B$) of equal lengths as shown in Figure. The cross-sectional areas of wires $A$ and $B$ are $1.0\; mm ^{2}$ and $2.0\; mm ^{2}$. respectively. At what point along the rod should a mass $m$ be suspended in order to produce $(a)$ equal stresses and $(b)$ equal strains in both steel and alumintum wires.
The pressure that has to be applied to the ends of a steel wire of length $10\ cm$ to keep its length constant when its temperature is raised by $100^o C$ is: (For steel Young's modulus is $2 \times 10^{11}$ $Nm^{-1}$ and coefficient of thermal expansion is $1.1 \times 10^{-5}$ $K^{-1}$ )
When a weight of $10\, kg$ is suspended from a copper wire of length $3$ metres and diameter $0.4\, mm,$ its length increases by $2.4\, cm$. If the diameter of the wire is doubled, then the extension in its length will be ........ $cm$
Two exactly similar wires of steel and copper are stretched by equal forces. If the total elongation is $2 \,cm$, then how much is the elongation in steel and copper wire respectively? Given, $Y_{\text {steel }}=20 \times 10^{11} \,dyne / cm ^2$, $Y_{\text {copper }}=12 \times 10^{11} \,dyne / cm ^2$