- Home
- Standard 11
- Physics
5.Work, Energy, Power and Collision
medium
A stone of mass $m$ is tied to a string and is moved in a vertical circle of radius $r$ making $n$ revolutions per minute. The total tension in the string when the stone is at its lowest point is
A
$mg$
B
$m(g + \pi nr^2)$
C
$m(g + \pi nr)$
D
$m\{g + (\pi ^2 n^2\,r)/900\}$
Solution
$\mathrm{T}=\mathrm{mg}+\mathrm{m} \omega^{2} \mathrm{r}=\mathrm{m}\left\{\mathrm{g}+4 \pi^{2} \mathrm{n}^{2} \mathrm{r}\right\}$
$=\mathrm{m}\left\{\mathrm{g}+\left(4 \pi^{2}\left(\frac{\mathrm{n}}{60}\right)^{2} \mathrm{r}\right)\right\}=\mathrm{m}\left\{\mathrm{g}+\left(\frac{\pi^{2} \mathrm{n}^{2} \mathrm{r}}{900}\right)\right\}$
Standard 11
Physics