एक छात्र सूत्र $Y =\frac{ MgL ^{3}}{4 bd ^{3} \delta}$ का प्रयोग करके यंग प्रत्यास्थता गुणांक ज्ञात करता है। बिना सार्थक त्रुटि के $g$ का मान $9.8\, m / s ^{2}$ लिया जाता है तथा उसके प्रेक्षण निम्नलिखित हैं।
भौतिक राशियां | माप के लिए प्रयुक्त उपकरण का अल्पतमांक | प्रेक्षित मान |
द्रव्यमान $({M})$ | $1\; {g}$ | $2\; {kg}$ |
छड़ की लम्बाई $(L)$ | $1\; {mm}$ | $1 \;{m}$ |
छड़ की चौड़ाई $(b)$ | $0.1\; {mm}$ | $4\; {cm}$ |
छड़ की मोटाई $(d)$ | $0.01\; {mm}$ | $0.4 \;{cm}$ |
अवनमन $(\delta)$ | $0.01\; {mm}$ | $5 \;{mm}$ |
$Y$ के माप में भिन्नात्मक त्रुटि है?
$0.0083$
$0.0155$
$0.155$
$0.083$
एक सरल लोलक की लम्बाई का मान $2 \mathrm{~mm}$ शुद्धता के साथ $20 \mathrm{~cm}$ मापा जाता है। $50$ दोलनों के लिए $1$ सेंकड शुद्धता के साथ मापा समय $40$ सेंकड है। इस माप से गुरूत्वीय त्वरण के मापन की शुद्धता $\mathrm{N} \%$ है। $\mathrm{N}$ का मान है :
एक भौतिक राशि $X$ चार प्रक्षेपित राशियों $k,\,l,\, m$ एवं $n$ से व्यजंक $X = \frac{{2{k^3}{l^2}}}{{m\sqrt n }}$ द्वारा सम्बन्धित है तथा $k,\,l,\, m$ व $n$ के मापन की प्रतिशत त्रुटि क्रमश: $1\%,2\%,3\%$ एवं $4\% $ है तो $X$ में प्रतिशत त्रुटि ......... $\%$ होगी
त्रिज्या $0.2\,cm$ (अल्पतमांक $0.001\, cm$ के पैमाने से मापने पर) तथा लम्बाई $1 \,m$ (अल्पतमांक $1 \,mm$ के पैमाने से मापने पर) के किसी तार के यंग गुणांक को निर्धारित करने के लिए इस तार के एक सिरे पर $1\, kg$ का भार (अल्पतमांक $1 \,g$ के पैमाने से मापने पर) लटकाने पर तार में विस्तार $0.5 \,cm$ (अल्पतमांक $0.001 \,cm$ के पैमाने से मापने पर) होता है। इस प्रयोग में निर्धारित यंग गुणांक के मान में भिन्नात्मक त्रुटि क्या होगी? ($\%$ में)
ताप तथा वोल्टेज स्रोत में अप्रत्याशी उतार चढ़ाव के कारण मापन में त्रुटियाँ हैं :
एक सरल लोलक का आवर्तकाल $T =2 \pi \sqrt{\frac{\ell}{ g }}$ से दिया गया है। लोलक की लम्बाई को $10 \,cm , 1\, mm$ यथार्थता के साथ मापा गया है। लोलक के $200$ दोलनों का समय $1 \,s$ विभेदन वाली घड़ी से $100 \,s$ मापा गया है। ' $g$ ' के मान को इस सरल लोलक द्वारा यथार्थता के साथ मापने पर प्रतिशत त्रुटि ' $x$ ' है। ' $x$ ' का मान निकटतम पूर्णांक में होगा। ($\%$ में)