- Home
- Standard 11
- Mathematics
જો વિર્ધાથી $(2n + 1)$ બુકમાંથી વધુમાં વધુ $n$ બુક પસંદ કરી શકે છે.જો તે બુકની કુલ પસંદગી $63$ કરે છે,તો$n$ ની કિંમત મેળવો.
$2$
$3$
$4$
એકપણ નહિ.
Solution
(b) Since the student is allowed to select at most n books out of $(2n + 1)$ books, therefore in order to select one book he has the choice to select one, two, three, ……, $n$ books.
Thus, if $T$ is the total number of ways of selecting one book then $T = {\,^{2n + 1}}{C_1} + {\,^{2n + 1}}{C_2} + … + {\,^{2n + 1}}{C_n} = 63$ …..$(i)$
Again the sum of binomial coefficients
$^{2n + 1}{C_0} + {\,^{2n + 1}}{C_1} + {\,^{2n + 1}}{C_2} + ….. + {\,^{2n + 1}}{C_n} + {\,^{2n + 1}}{C_{n + 1}}$
${ + ^{2n + 1}}{C_{n + 2}} + …. + {\,^{2n + 1}}{C_{2n + 1}} = {(1 + 1)^{2n + 1}} = {2^{2n + 1}}$
or $^{2n + 1}{C_0} + 2{(^{2n + 1}}{C_1} + {\,^{2n + 1}}{C_2} + .. + {\,^{2n + 1}}{C_n}){ + ^{2n + 1}}{C_{2n + 1}} = {2^{2n + 1}}$
==> $1 + 2(T) + 1 = {2^{2n + 1}}$ ==> $1 + T = \frac{{{2^{2n + 1}}}}{2} = {2^{2n}}$
==> $1 + 63 = {2^{2n}}$
$\Rightarrow {2^6} = {2^{2n}}$
$\Rightarrow n = 3$.