6.Permutation and Combination
hard

જો ગણમાં $2n + 1$ ઘટકો હોય તો $n$ કરતાં વધારે સભ્ય ધરાવતાં ગણના ઉપગણની સંખ્યા મેળવો.

A

${2^{n - 1}}$

B

${2^n}$

C

${2^{n + 1}}$

D

${2^{2n}}$

Solution

(d) Let the original set contains $(2n + 1)$ elements, then subsets of this set containing more than $n$ elements, i.e., subsets containing $(n + 1)$ elements, $(n + 2)$ elements, ……. $(2n + 1)$ elements.

$\therefore $ Required number of subsets

$ = {\,^{2n + 1}}{C_{n + 1}} + {\,^{2n + 1}}{C_{n + 2}} + …. + {\,^{2n + 1}}{C_{2n}} + {\,^{2n + 1}}{C_{2n + 1}}$

$ = {\,^{2n + 1}}{C_n} + {\,^{2n + 1}}{C_{n – 1}} + … + {\,^{2n + 1}}{C_1} + {\,^{2n + 1}}{C_0}$

$ = {\,^{2n + 1}}{C_0} + {\,^{2n + 1}}{C_1} + {\,^{2n + 1}}{C_2} + … + {\,^{2n + 1}}{C_{n – 1}} + {\,^{2n + 1}}{C_n}$

$ = {1 \over 2}\left[ {{{(1 + 1)}^{2n + 1}}} \right]$$ = {1 \over 2}[{2^{2n + 1}}] = {2^{2n}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.