એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો . . . .
$x = 39$
$x = 63$
$39 \le x \le 63$
એકપણ નહી.
$35$ વિદ્યાર્થીઓના વર્ગમાં $24$ ને ક્રિકેટ રમવું ગમે છે અને $16$ ને ફૂટબૉલ રમવું ગમે છે. દરેક વિદ્યાર્થી બે રમતોમાંથી ઓછામાં ઓછી એક રમત રમવાનું પસંદ કરે છે. ક્રિકેટ અને ફૂટબૉલ બંને રમત રમવાનું કેટલા વિદ્યાર્થીઓ પસંદ કરતા હશે ?
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{2}$ ની અસર હોય, પરંતુ રસાયણ $C _{1}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
સમતલના તમામ ત્રિકોણના ગણને $\mathrm{U}$ તરીકે લો. જો ઓછામાં ઓછો એક ખૂણો $60^{\circ},$ થી ભિન્ન હોય તેવા ત્રિકોણનો ગણ $\mathrm{A}$ હોય, તો $\mathrm{A} ^{\prime}$ શું થશે ?
$40$ વિદ્યાર્થીઓનો એક સમૂહ $3$ વિષયો - ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ની પરીક્ષામાં ઉપસ્થિત થાય છે. એવું જોવામાં આવ્યુ છે કે બધા જ વિદ્યાર્થીઓ ઓછામાં ઓછા એક વિષયમાં ઉતીર્ણ થયા છે, $20$ વિદ્યાર્થીઓ ગણિતશાસ્ત્રમાં ઉતીર્ણ થયા છે, $25$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રમાં ઉતીર્ણ થયા છે, $16$ વિદ્યાર્થીઓ રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $11$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને ભૌતિકશાસ્ત્રમાં બંનેમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ન્ર માં ઉતીર્ણ થયા, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે. ત્રણેય વિષયમાં ઉતીર્ણ થનાર વિદ્યાર્થીઓની મહત્તમ સંખ્યા___________ છે.
$140$ વિધ્યાર્થીઑ ના વર્ગ માં વિધ્યાર્થીઑ ને $1$ to $140$ નંબર આપેલ છે બધા યુગ્મ નંબર વાળા વિધ્યાર્થીઓ ગણિત વિષય પસંદ કરે છે , જે વિધ્યાર્થી નો નંબર $3$ વડે વિભાજય છે તે ભૌતિકવિજ્ઞાન પસંદ કરે છે અને જે વિધ્યાર્થીઓ ના નંબર $5$ વડે વિભાજય છે તે રસાયણ વિજ્ઞાન પસંદ કરે છે તો કેટલા વિધ્યાર્થીઓ ત્રણેય વિષય માથી એક પણ વિષય પસંદ કરતા નથી.