1.Set Theory
hard

એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો  . . . .

A

$x = 39$

B

$x = 63$

C

$39 \le x \le 63$

D

એકપણ નહી.

Solution

(c) Let $A$ denote the set of Americans who like cheese and let $B$ denote the set of Americans who like apples.

Let Population of American be $100$.

Then $n\,(A) = 63,n\,(B) = 76$

Now, $n\,(A \cup B) = n(A) + n(B) – n(A \cap B)$

$ = 63 + 76 – n(A \cap B)$

 $\therefore n\,(A \cup B) + n(A \cap B) = 139$

==> $n\,(A \cap B) = 139 – n(A \cup B)$

But $n\,(A \cup B) \le 100$

$\therefore – n\,(A \cup B) \ge – 100$

 $\therefore 139 – n\,(A \cup B) \ge 139 – 100 = 39$

 $\therefore n(A \cap B) \ge 39$ i.e., $39 \le n(A \cap B)$…..(i)

Again, $A \cap B \subseteq A,A \cap B \subseteq B$

$ \therefore n\,(A \cap B) \le n\,(A) = 63$ and $n\,(A \cap B) \le n\,(B) = 76$

$\therefore n(A \cap B) \le 63$…..(ii)

Then, $39 \le n\,(A \cap B) \le 63$ ==> $39 \le x \le 63$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.