$500$ મોટરમાલિક વિષયક સંશોધનમાં માલૂમ પડ્યું કે $\mathrm{A}$ પ્રકારની મોટરના માલિકોની સંખ્યા $400$ અને $\mathrm{B}$ પ્રકારની મોટરના માલિકોની સંખ્યા $200$ છે. જ્યારે $50$ મોટર માલિકો $\mathrm{A}$ અને $\mathrm{B}$ બંને પ્રકારની મોટર ધરાવે છે. શું આ માહિતી સાચી છે ?
Let $U$ be the set of car owners investigated, $M$ be the set of persons who owned car $A$ and $S$ be the set of persons who owned car $B.$
Given that $\quad n( U )=500, n( M )=400, n( S )=200$ and $n( S \cap M )=50$
Then $\quad n( S \cup M )=n( S )+n( M )-n( S \cap M )=200+400-50=550$
But $S \cup M \subset U$ implies $n( S \cup M ) \leq n( U )$
This is a contradiction. So, the given data is incorrect.
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
એક સર્વે અનુસાર એક ઓફિસમાં $73 \%$ કર્મચારીઓને કોફી પીવાનું પસંદ કરે જ્યારે $65 \%$ કર્મચારીઓને ચા પીવાનું પસંદ છે જો $x$ એ ટકાવારી દર્શાવે છે કે ચા અને કોફી પીવાના પસંદ કરતા કર્મચારીઓ દર્શાવે તો $x$ ............ ના હોઈ શકે
એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?
એક સંસ્થા પ્રસંગ '$A$' માં $48$ પ્રસંગ '$B$' માં $25$ અને પ્રસંગ '$C$ ' માં $18$ મેડલ આપે છે. જો આ મેડલ $60$ પુરુષોને ફાળે ગયા હોય અને ફક્ત પાંચ પુરુષોને ત્રણેય પ્રસંગોમાં મેડલ મળ્યા હોય, તો ત્રણ પ્રસંગોમાંથી કેટલાને બરાબર બે મેડલ મળ્યા હશે ?
$400$ વ્યક્તિઓના સમૂહમાં, $250$ હિન્દી બોલી શકે છે અને $200$ અંગ્રેજી બોલી શકે છે, તો કેટલી વ્યક્તિઓ હિન્દી અને અંગ્રેજી બંને બોલી શકે ? $400$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલી શકે છે.