If the area of the triangle formed by the positive $x-$axis, the normal and the tangent to the circle $(x-2)^{2}+(y-3)^{2}=25$ at the point $(5,7)$ is $A$ then $24 A$ is equal to ...... .
$1140$
$1225$
$2450$
$612$
If the tangent at the point $P$ on the circle ${x^2} + {y^2} + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point $Q$ on the $y$- axis, then the length of $PQ$ is
A circle with centre $'P'$ is tangent to negative $x$ & $y$ axis and externally tangent to a circle with centre $(-6,0)$ and radius $2$ . What is the sum of all possible radii of the circle with centre $P$ ?
If the line $y$ $\cos \alpha = x\sin \alpha + a\cos \alpha $ be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then
From any point on the circle ${x^2} + {y^2} = {a^2}$ tangents are drawn to the circle ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $, the angle between them is
The two circles which passes through $(0,a)$ and $(0, - a)$ and touch the line $y = mx + c$ will intersect each other at right angle, if