- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
medium
A tangent to the circle ${x^2} + {y^2} = 5$at the point $(1,-2)$ the circle ${x^2} + {y^2} - 8x + 6y + 20 = 0$
A
Touches
B
Cuts at real points
C
Cuts at imaginary points
D
None of these
(IIT-1975)
Solution
(a) Tangent is $x – 2y – 5 = 0$ and points of intersection with circle ${x^2} + {y^2} – 8x + 6y + 20 = 0$ are given by
$4{y^2} + 25 + 20y + {y^2} – 16y – 40 + 6y – 20 = 0$
$ \Rightarrow 5{y^2} + 10y + 5 = 0$
$ \Rightarrow y = – 1$ and $x = – 3$
Standard 11
Mathematics