Let the normals at all the points on a given curve pass through a fixed point $(a, b) .$ If the curve passes through $(3,-3)$ and $(4,-2 \sqrt{2}),$ and given that $a-2 \sqrt{2} b=3,$ then $\left(a^{2}+b^{2}+a b\right)$ is equal to ..... .

  • [JEE MAIN 2021]
  • A

    $6$

  • B

    $3$

  • C

    $4$

  • D

    $9$

Similar Questions

The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-

Let the lines $y+2 x=\sqrt{11}+7 \sqrt{7}$ and $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ be normal to a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. If the line $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ is tangent to the circle $C$, then the value of $(5 h-8 k)^{2}+5 r^{2}$ is equal to.......

  • [JEE MAIN 2022]

Points $P (-3,2), Q (9,10)$ and $R (\alpha, 4)$ lie on a circle $C$ with $P R$ as its diameter. The tangents to $C$ at the points $Q$ and $R$ intersect at the point $S$. If $S$ lies on the line $2 x - ky =1$, then $k$ is equal to $.........$.

  • [JEE MAIN 2023]

If $2x - 4y = 9$ and $6x - 12y + 7 = 0$ are the tangents of same circle, then its radius will be

If the equation of one tangent to the circle with centre at $(2, -1)$ from the origin is $3x + y = 0$, then the equation of the other tangent through the origin is