- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
Let the normals at all the points on a given curve pass through a fixed point $(a, b) .$ If the curve passes through $(3,-3)$ and $(4,-2 \sqrt{2}),$ and given that $a-2 \sqrt{2} b=3,$ then $\left(a^{2}+b^{2}+a b\right)$ is equal to ..... .
A
$6$
B
$3$
C
$4$
D
$9$
(JEE MAIN-2021)
Solution

All normals of circle passes through centre Radius $= CA = CB$
$CA ^{2}= CB ^{2}$
$( a -3)^{2}+( b +3)^{2}$
$=( a -4)^{2}+( b -2 \sqrt{2})^{2}$
$a+(3-2 \sqrt{2}) b=3$
$a-2 \sqrt{2} b+3 b=3 ….(1)$
given that $a -2 \sqrt{2} b =3 ….(2)$
from $(1) \&(2) \Rightarrow a=3, b=0$
$a^{2}+b^{2}+a b=9$
Standard 11
Mathematics