एक टेनिस की गेंद को एक क्षैतिज चिकनी सतह पर गिराया जाता है। गेंद सतह से टकराने के पश्चात् पुनः अपने मुल स्थान पर पहुँच जाती है। संघट्ट (collision) के दौरान, गेंद पर लगने वाला बल उसकी संपीड़न लंबाई के अनुक्रमानुपाती है। निम्न में से कौनसा रेखाचित्र, समय $t$ के साथ गेंद की गतिज ऊर्जा $K$ के परिवर्तन को सर्वाधिक उचित रूप से प्रदर्शित करता है। (चित्र केवल सांकेतिक हैं और मापन के अनुरूप नहीं हैं)।

  • [IIT 2014]
  • A
    224114-a
  • B
    224114-b
  • C
    224114-c
  • D
    224114-d

Similar Questions

दो कणों के द्रव्यमान क्रमश: $m_1$ तथा $m_2$ हैं। इनके प्रारम्भिक वेग क्रमश: $u_1$ तथा $u_2$ हैं। टक्कर के पश्चात् एक कण $\epsilon$ ऊर्जा अवशोषित कर उच्चतर स्तर तक उत्तेजित हो जाता है। यदि कणों के अन्तिम वेग क्रमशः $v_1$ तथा $v_2$ हो, तो

  • [AIPMT 2015]

कणों के किसी निकाय की गति को इसके द्रव्यमान केन्द्र की गति और द्रव्यमान केन्द्र के परित: गति में अलग-अलग करके विचार करना। दर्शाइये कि-

$(a)$ $p = p _{i}^{\prime}+m_{i} V$, जहाँ ( $m_i$, द्रव्यमान वाले) $i-$ वें कण का संवेग है, और $p _{i}^{\prime}=m_{i} v _{i}^{\prime} \mid$ ध्यान द्द कि $v_i^{\prime} $, द्रव्यमान केन्द्र के 

सापेक्ष $i-$ वें कण का वेग है। द्रव्यमान केन्द्र की परिभाषा का उपयोग करके यह भी सिद्ध कीजिए कि $\sum p _{i}^{\prime}=0$

$(b)$ $K=K^{\prime}+1 / 2 M V^{2}$

$K$ कणों के निकाय की कुल गतिज ऊर्जा, $K ^{\prime}=$ निकाय की कुल गतिज ऊर्जा जबकि कणों की गतिज ऊर्जा द्रव्यमान केन्द्र के सापेक्ष ली जाय। $M V^{2} / 2$ संपूर्ण निकाय के (अर्थात् निकाय के द्रव्यमान केन्द्र के ) स्थानान्तरण की गतिज ऊर्जा है। इस परिणाम का उपयोग भाग में किया गया है।

$(c)$ $L = L ^{\prime}+ R \times M V$

जहाँ $L ^{\prime}=\sum r _{i}^{\prime} \times p _{i}^{\prime}$ द्रव्यमान के परित: निकाय का कोणीय संवेग है जिसकी गणना में वेग द्रव्यमान केन्द्र के सापेक्ष मापे गये हैं। याद कीजिए $r _{t}^{\prime}= r _{t}- R$; शेष सभी चिह्न अध्याय में प्रयुक्त विभिन्न राशियों के मानक चिह्न हैं। ध्यान दें कि $L$ ' द्रव्यमान केन्र के परितः निकाय का कोणीय संवेग एवं $M R \times V$ इसके द्रव्यमान केन्द्र का कोणीय संवेग है।

$(d)$ $\frac{d L ^{\prime}}{d t}=\sum r _{t}^{\prime} \times \frac{d p ^{\prime}}{d t}$

यह भी दर्शाइये कि $\frac{d L ^{\prime}}{d t}=\tau_{e x t}^{\prime}$

(जहाँ $\tau_{\text {ext }}^{\prime}$ द्रव्यमान केन्द्र के परित: निकाय पर लगने वाले सभी बाहय बल आघूर्ण हैं।) [ संकेत : द्रव्यमान केन्द्र की परिभाषा एवं न्यूटन के गति के तृतीय नियम का उपयोग कीजिए। यह मान लीजिए कि किन्ही दो कणों के बीच के आन्तरिक बल उनको मिलाने वाली रेखा के अनुदिश कार्य करते हैं।]

$200\, kg$ द्रव्यमान की कोई ट्रॉली किसी घर्षणरहित पथ पर $36\, km h ^{-1}$ की एकसमान चाल से गतिमान है। $20\, kg$ द्रव्यमान का कोई बच्चा ट्रॉली के एक सिरे से दूसरे सिरे तक $\left(10\, m \right.$ दूर) ट्रॉली के सापेक्ष $4\, m s ^{-1}$ की चाल से ट्रॉली की गति की विपरीत दिशा में दौड़ता है और ट्रॉली से बाहर कूद जाता है। ट्रॉली की अंतिम चाल क्या है ? बच्चे के दौड़ना आरंभ करने के समय से ट्रॉली ने कितनी दूरी तय की ?

$v$ वेग से गतिमान $m$ ग्राम की एक गोली $M$ ग्राम के लटके हुए एक लकड़ी के तख्ते से टकराती है, जिससे लकड़ी का तख्ता $h$ ऊँचाई तक उठ जाता है। तख्ते का प्रारम्भिक वेग होगा

द्रव्यमान $0.1$  किग्रा के पिण्ड पर लगाया गया बल दूरी के साथ चित्रानुसार परिवर्तित होता है। यदि इसकी गति $x = 0$ पर विरामावस्था से प्रारंभ होती है, तब $x = 12\,m$ पर पिण्ड का वेग .............. $m/s$ होगा