A thin $1 \,m$ long rod has a radius of $5\, mm$. A force of $50\,\pi kN$ is applied at one end to determine its Young's modulus. Assume that the force is exactly known. If the least count in the measurement of all lengths is $0.01\, mm$, which of the following statements is false ?

  • [JEE MAIN 2016]
  • A

    The maximum value of $Y$ that can be determined is $10^{14}\,N/m^2$

  • B

    $\frac{{\Delta Y}}{Y}$ gets minimum contribution from the uncertainty in the length

  • C

    $\frac{{\Delta Y}}{Y}$ gets its maximum contribution from the uncertainty in strain 

  • D

    The figure of merit is the largest for the length of the rod.

Similar Questions

Two similar wires under the same load yield elongation of $0.1$ $mm$ and $0.05$ $mm$ respectively. If the area of cross- section of the first wire is $4m{m^2},$ then the area of cross section of the second wire is..... $mm^2$

If in case $A$, elongation in wire of length $L$ is $l$, then for same wire elongation in case $B$ will be ......

Two wires each of radius $0.2\,cm$ and negligible mass, one made of steel and other made of brass are loaded as shown in the figure. The elongation of the steel wire is $.........\times 10^{-6}\,m$. [Young's modulus for steel $=2 \times 10^{11}\,Nm ^{-2}$ and $g =10\,ms ^{-2}$ ]

  • [JEE MAIN 2023]

Two steel wires of same length but radii $r$ and $2r$ are connected together end to end and tied to a wall as shown. The force stretches the combination by $10\ mm$. How far does the midpoint $A$ move ............ $mm$

One end of a horizontal thick copper wire of length $2 L$ and radius $2 R$ is welded to an end of another horizontal thin copper wire of length $L$ and radius $R$. When the arrangement is stretched by a applying forces at two ends, the ratio of the elongation in the thin wire to that in the thick wire is :

  • [IIT 2013]