द्रव्यमान $M$ तथा लम्बाई $a$ की एक पतली छड़ एक क्षैतिज तल में बिन्दु $O$ से गुजरने वाले एक स्थिर ऊर्ध्वाधर अक्ष के परितः घूर्णन करने के लिए स्वतंत्र है। द्रव्यमान $M$ तथा त्रिज्या $a / 4$ की एक पतली वृत्ताकार डिस्क को एक छड़ पर उसके स्वतंत्र सिरे से $a / 4$ दूरी पर चित्रानुसार धुराग्रस्थ (pivoted) किया गया है, जिससे वह अपने ऊर्ध्वाधर अक्ष के परितः घूर्णन करने के लिए स्वतंत्र है। मान ले कि छड़ और डिस्क दोनों का एकसमान घनत्व है, तथा गति के दौरान दोनों क्षैतिज रहते हैं। एक स्थिर प्रेक्षक किसी क्षण छड़ को कोणीय वेग (angular velocity) $\Omega$ से तथा डिस्क को कोणीय वेग $4 \Omega$ से घूर्णन करते हुए पाता है। इस निकाय का कोणीय संवेग (angular momentum) बिन्दु $O$ के परितः $\left(\frac{ M a^2 \Omega}{48}\right) n$ है। $n$ का मान होगा।
$30$
$35$
$49$
$50$
यदि पृथ्वी की त्रिज्या अचानक घट जाये तो
एक कण कोणीय संवेग $L$ से एकसमान वृत्तीय गति कर रहा है। यदि कण की गति की आवृत्ति दुगुनी एवं गतिज ऊर्जा आधी कर दी जाए तो कोणीय संवेग होगा
द्रव्यमान $\mathrm{m}$ वाले एक पिण्ड को धरातल से $45^{\circ}$ कोण पर चाल ' $u$ ' से प्रक्षेपित किया जाता है। उच्चतम बिन्दु पर प्रक्षेपण बिन्दु के सापेक्ष पिण्ड का कोणीय संवेग यदि $\frac{\sqrt{2} \mathrm{mu}^3}{\mathrm{Xg}}$ हो तो ' $\mathrm{X}$ ' का मान है।
द्रव्यमान $M=0.2 kg$ का एक कण आरंभ में $x y$-समतल के एक बिन्दु $( x =-l, y =-h)$ पर विरामावस्था में है, जहाँ $l=10 m$ तथा $h=1 m$ हैं। समय $t =0$ पर कण को $a =10 m / s ^2$ के नियत त्वरण (constant acceleration) से धनात्मक $x$-अक्ष की दिशा में त्वरित किया जाता है। मूल बिन्दु के सापेक्ष, कण के कोणीय संवेग (angular momentum) तथा बल आघूर्ण (torque) SI इकाई में क्रमशः $\overrightarrow{ L }$ और $\vec{\tau}$ से परिभाषित हैं। $\hat{ i }, \hat{ j }$ तथा $\hat{ k }$ क्रमश: धनात्मक $x, y$ और $z$-अक्षों की दिशाओं में इकाई सदिशें (unit vectors) हैं। यदि $\hat{ k }=\hat{ i } \times \hat{ j }$, तो निम्न में से कौन सा (से) कथन सत्य है (हैं)?
$(A)$ समय $t =2 s$ पर कण बिन्दु $(x-l, y--h)$ पर पहुँचता है
$(B)$ $\vec{\tau}=2 \hat{ k }$, जब कण बिन्दु $(x=1, y=-h)$ से गुजरता है
$(C)$ $\overrightarrow{ L }=4 \hat{ k }$, जब कण बिन्दु $(x=l, y=-h)$ से गुजरता है
$(D)$ $\vec{\tau}=\hat{ k }$, जब कण बिन्दु $(x-0, y-h)$ से गुजरता है
द्रव्यमान $m$ अचर वेग से $X-$अक्ष के समान्तर एक रेखा में गति कर रहा है। मूलबिन्दु अथवा $Z-$अक्ष के सापेक्ष इसका कोणीय संवेग