A thin semi-circular ring ofradius $r$ has a positive charge $q$ distributed uniformly over it. The net field $\vec E$ at the centre $O$ is
$\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j\;\;\;\;\;\;\;\;$
$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
$-$$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
$-$$\;\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$
A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta $ with a large charged conducting sheet $P$, as shown in the figure. The surface charge density $\sigma $ of the sheet is proportional to
Two point charges $q_1\,(\sqrt {10}\,\,\mu C)$ and $q_2\,(-25\,\,\mu C)$ are placed on the $x-$ axis at $x = 1\,m$ and $x = 4\,m$ respectively. The electric field (in $V/m$ ) at a point $y = 3\,m$ on $y-$ axis is, [ take ${\mkern 1mu} {\mkern 1mu} \frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}{\mkern 1mu} {\mkern 1mu} N{m^2}{C^{ - 2}}{\rm{ }}$ ]
A total charge $q$ is divided as $q_1$ and $q_2$ which are kept at two of the vertices of an equilateral triangle of side a. The magnitude of the electric field $E$ at the third vertex of the triangle is to be depicted schematically as a function of $x=q_1 / q$. Choose the correct figure.
Four charges $q, 2q, -4q$ and $2q$ are placed in order at the four corners of a square of side $b$. The net field at the centre of the square is
A thin conducting ring of radius $R$ is given a charge $+Q.$ The electric field at the centre $O$ of the ring due to the charge on the part $AKB$ of the ring is $E.$ The electric field at the centre due to the charge on the part $ACDB$ of the ring is